Numerical Python

David Ascher
Paul F. Dubois
Konrad Hinsen
Jim Hugunin
Travis Oliphant

March 15, 2001

Lawrence Livermore National Laboratory, Livermore, CA 94566
UCRL-MA-128569

Legal Notice

Please seefile Legal.html in the source distribution.

This open source project has been contributed to by many people, including personnel of the Lawrence Liver-
more National Laboratory. The following notice covers those contributions including this manua .

Copyright (c) 1999. The Regents of the University of California. All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose without feeis hereby granted,
provided that this entire noticeisincluded in all copies of any software which is or includes a copy or modifi-
cation of this software and in all copies of the supporting documentation for such software.

Thiswork was produced at the University of California, Lawrence Livermore National Laboratory under con-
tract no. W-7405-ENG-48 between the U.S. Department of Energy and The Regents of the University of Cali-
forniafor the operation of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of Californianor any of their employees, makes any
warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately-owned rights. Reference herein to any specific commercia products, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government
or the University of California, and shall not be used for advertising or product endorsement purposes.

Table Of Contents

Numerical Python 1

1 Introduction 2

Where to get information and code 3
Acknowledgments 4

2 Installing NumPy 5

Testing the Python installation 5
Testing the Numeric Python Extension Installation 5
Installing NumPy 5
Installing on Windows 6
Installing on Unix 6
At the SourceForge... 6
The Numeric Discussion List 6
Bugs and Patches 6
CVS Repository 6
FTP Site 6
Pyfort 6

3 The NumTut package 7

Testing the NumTut package 7
Possible reasons for failure: 7
Win32 7
Unix 8

4 High-Level Overview 9

Array Objects 9
Universal Functions 10
Convenience Functions 10

5 Array Basics 12

Basics 12
Creating arrays from scratch 12
array() and typecodes 12
Multidimensional Arrays 14
resize 16
Creating arrays with values specified “on-the-fly' 17
zeros() and ones() 17
arrayrange() 17
Creating an array from a function: fromfunction() 19
identity() 20
Coercion and Casting 20
Automatic Coercions and Binary Operations 20
Deliberate up-casting: The asarray function 21
The typecode value table 21
Consequences of silent upcasting 22
Saving space 22

Deliberate casts (potentially down): the astype method 22
Operating on Arrays 23

Simple operations 23
Getting and Setting array values 24
Slicing Arrays 25

6 Ufuncs 27

What are Ufuncs? 27
Ufuncs can operate on any Python sequence 28
Ufuncs can take output arguments 28
Ufuncs have special methods 28
The reduce ufunc method 28
The accumulate ufunc method 29
The outer ufunc method 29
The reduceat ufunc method 29
Ufuncs always return new arrays 30
Which are the Ufuncs? 30
Unary Mathematical Ufuncs (take only one argument) 30
Binary Mathematical Ufuncs 30
Logical Ufuncs 30
Ufunc shorthands 31

7 Pseudo Indices 32

8 Array Functions 34

take(a, indices, axis=0) 34

put (a, indices, values) 35

putmask (a, mask, values) 36
transpose(a, axes=None) 36
repeat(a, repeats, axis=0) 36
choose(a, (b0, ..., bn)) 36

ravel(a) 37

nonzero(a) 37

where(condition, X, y) 37
compress(condition, a, axis=0) 37
diagonal(a, k=0) 37

trace(a, k=0) 38

searchsorted(a, values) 38

sort(a, axis=-1) 38

argsort(a, axis=-1) 39

argmax(a, axis=-1), argmin(a, axis=-1) 39
fromstring(string, typecode) 39
dot(m1, m2) 40

matrixmultiply(m1, m2) 40

clip(m, m_min, m_max) 40
indices(shape, typecode=None) 40
swapaxes(a, axisl, axis2) 41
concatenate((a0, al, ... , an), axis=0) 41
innerproduct(a, b) 42
outerproduct(a,b) 42

array_repr() 42

array_str() 42

resize(a, new_shape) 42

diagonal(a, offset=0, axis1=-2, axis2=-1) 42
FEPEAL. ..ot ittt (a, counts, axis=0) 42
convolve (a, v, mode=0) 43
cross_correlate (a, v, mode=0) 43

where (condition, X, y) 43

identity(n) 43

sum(a, index=0) 44

cumsum(a, index=0) 44

product(a, index=0) 44

cumproduct(a, index=0) 44

alltrue(a, index=0) 44

sometrue(a, index=0) 44

9 Array Methods 45

itemsize() 45
iscontiguous() 45
typecode() 45
byteswapped() 45
tostring() 45
tolist() 46

10 Array Attributes 47

flat 47
real and imaginary 47

11 Special Topics 49

Subclassing 49
Code Organization 49
Numeric.py and friends 49
UserArray.py 49
Matrix.py 49
Precision.py 49
ArrayPrinter.py 49
Mlab.py 49
bartlett(M) 49
blackman(M) 50
corrcoef(x, y=None) 50
cov(m,y=None) 50
cumprod(m) 50
cumsum(m) 50
diag(v, k=0) 50
diff(x, n=1) 50
eig(m) 50
eye(N, M=N, k=0, typecode=None) 50
fliplr(m) 50
flipud(m) 50
hamming(M) 50
hanning(M) 50
kaiser(M, beta) 50
max(m) 50
mean(m) 50

median(m) 50
min(m) 51
msort(m) 51
prod(m) 51
ptp(m) 51
rand(dl, ..., dn) 51
rot90(m,k=1) 51
sinc(x) 51
squeeze(a) 51
std(m) 51
sum(m) 51
svd(m) 51
trapz(y,x=None) 51
tri(N, M=N, k=0, typecode=None) 51
tril(m,k=0) 51
triu(m,k=0) 51
The multiarray object 52
Typecodes 52
Indexing in and out, slicing 53
Ellipses 54
NewAXxis 54
Set-indexing and Broadcasting 54
Axis specifications 55
Textual representations of arrays 55
Comparisons 57
Pickling and Unpickling -- storing arrays on disk 57
Dealing with floating point exceptions 57

12 Writing a C extension to NumPy 58

Introduction 58
Preparing an extension module for NumPy arrays 58
Accessing NumPy arrays from C 58
Types and Internal Structure 58
Element data types 59
Contiguous arrays 60
Zero-dimensional arrays 60
A simple example 60
Accepting input data from any sequence type 61
Creating NumPy arrays 62
Returning arrays from C functions 62
A less simple example 62

13 C API Reference 64

ArrayObject C Structure and API 64
Structures 64
The ArrayObject API 65
Notes 68

UfuncObject C Structure and API 68
C Structure 68
UfuncObject C API 70

14 Glossary 73

vi

Optional Packages 75

License and disclaimer for packages MA and RNG 76

15 FFT Reference 77

Python Interface 77
fft(data, n=None, axis=-1) 77
inverse_fft(data, n=None, axis=-1) 77
real_fft(data, n=None, axis=-1) 77
inverse_real_fft(data, n=None, axis=-1) 78
fft2d(data, s=None, axes=(-2,-1)) 78
real_fft2d(data, s=None, axes=(-2,-1)) 78

C API 78

Compilation Notes 79

16 LinearAlgebra Reference 80

Python Interface 80
solve_linear_equations(a, b) 80
inverse(a) 80
eigenvalues(a) 80
eigenvectors(a) 81
singular_value_decomposition(a, full_matrices=0) 81
generalized_inverse(a, rcond=1e-10) 81
determinant(a) 81
linear_least _squares(a, b, rcond=e-10) 81
Compilation Notes 81

17 RandomArray Reference 82

Python Interface 82
seed(x=0, y=0) 82
get_seed() 82
random(shape=ReturnFloat) 82
uniform(minimum, maximum, shape=ReturnFloat) 82
randint(minimum, maximum, shape=ReturnFloat) 82
permutation(n) 82
Floating point random arrays 83
standard_normal (shape=ReturnFloat) 83
normal (mean, stddev, shape=ReturnFloat) 83
multivariate_normal (mean, covariance) or
multivariate_normal (mean, covariance, leadingAxesShape) 83
exponential (mean, shape=ReturnFloat) 83
beta (a, b, shape=ReturnFloat) 83
gamma (a, r, shape=ReturnFloat) 84
chi_square (df, shape=ReturnFloat) 84
noncentral_chi_square (df, nonc, shape=ReturnFloat) 84
F (dfn, dfd, shape=ReturnFloat) 84
noncentral_F (dfn, dfd, nconc, shape=ReturnFloat) 84
Integer random arrays 84
binomial (trials, prob, shape=Returnint) 84
negative_binomial (trials, prob, shape=Returnint) 84
poisson (mean, shape=Returnint) 84
multinomial (trials, probs) or multinomial (trials, probs, leadingAxesShape) 84

Vi

Examples 85

18 Independent Random Streams 87

Background 87
Usage 87
Module RNG 87
Generator objects 87
Module ranf 88
Examples 88

19 Masked Arrays 89

What is a masked array? 89
Installing and using MA 89
Class MaskedArray 89
Attributes of masked arrays 90
Methods on masked arrays. 90
Constructing masked arrays 92
Working with Masks 93
Copying or not? 94
Behaviors 94
Indexing and Slicing 94
Indexing that produces a scalar result 95
Assignment to elements and slices 95
Module MA: Attributes 95
Module MA: Functions 95
Unary functions 95
Binary functions 95
Comparison operators 96
Logical operators 96
Special array operators 96
Controlling the size of the string representations 98
Helper classes 98
MAError 98
The constant masked 98
Example of masked behavior 98
Class masked_unary_function 99
Class masked_binary_function 99
ActiveAttributes 99
Examples of Using MA 100
Data with a given value representing missing data 100
Filling in the missing data 100
Numerical operations 100
Seeing the mask 100
Filling it your way 101
Ignoring extreme values 101
Averaging an entire multidimensional array 101

Index 103

viii

PART I: Numerical Python

Numerical Python (“Numpy”) adds a fast multidimensiona array facility to Python. This
part contains al you need to know about “Numpy” arrays and the functions that operate
upon them.

1. Introduction

This chapter introduces the Numeric Python extension and outlines the rest of the
document.

The Numeric Python extensions (NumPy henceforth) is a set of extensions to the Python programming lan-
guage which allows Python programmers to efficiently manipulate large sets of objects organized in grid-like
fashion. These sets of objects are called arrays, and they can have any number of dimensions: one dimensional
arrays are similar to standard Python sequences, two-dimensional arrays are similar to matrices from linear al-
gebra. Note that one-dimensional arrays are also different from any other Python sequence, and that two-dimen-
sional matrices are also different from the matrices of linear algebra, in wayswhich wewill mention later in this
text.

Why are these extensions needed? The core reason isavery prosaic one, and that is that manipulating a set of
amillion numbers in Python with the standard data structures such as lists, tuples or classesis much too slow
and uses too much space. Anything which we can do in NumPy we can do in standard Python — we just may
not be alive to see the program finish. A more subtle reason for these extensions however is that the kinds of
operations that programmers typically want to do on arrays, while sometimes very complex, can often be de-
composed into aset of fairly standard operations. Thisdecomposition has been devel oped similarly in many ar-
ray languages. In some ways, NumPy is simply the application of thisexperience to the Python |anguage — thus
many of the operations described in NumPy work the way they do because experience has shown that way to
be agood one, in avariety of contexts. The languages which were used to guide the devel opment of NumPy in-
clude the infamous APL family of languages, Basis, MATLAB, FORTRAN, S and S+, and others. This heri-
tage will be obviousto users of NumPy who already have experience with these other languages. This tutorial,
however, does not assume any such background, and all that isexpected of the reader is areasonable working
knowledge of the standard Python language.

This document isthe“official” documentation for NumPy. It isboth atutorial and the most authoritative source
of information about NumPy with the exception of the source code. Thetutorial material will walk you through
a set of manipulations of simple, small, arrays of numbers, as well as image files. This choice was made be-
cause:

* A concrete data set makes explaining the behavior of some functions much easier to motivate than simply
talking about abstract operations on abstract data sets;

» Every reader will have at least an intuition asto the meaning of the data and organization of imagefiles, and

» Theresult of various manipulations can be displayed simply since the data set hasanatural graphical rep-
resentation.

All users of NumPy, whether interested in image processing or not, are encouraged to follow the tutorial with

aworking NumPy installation at their side, testing the examples, and, more importantly, transferring the under-

standing gained by working on imagesto their specific domain. The best way to learn is by doing — the aim of

thistutorial is to guide you aong this “doing.”

Hereiswhat the rest of this part contains:

“Installing NumPy” on pageb providesinformation on testing Python, NumPy, and compiling and install-
ing NumPy if necessary.

“The NumTut package” on page 7 provides information on testing and installing the NumTut package,
which allows easy visualization of arrays.

“High-Level Overview” on page 9 gives ahigh-level overview of the components of the NumPy system as
awhole.

“Array Basics” on page 12 provides a detailed step-by-step introduction to the most important aspect of
NumPy, the multidimensional array objects.

“Ufuncs’ on page 27 provides information on universal functions, the mathematical functions which oper-
ate on arrays and other sequences elementwise.

“Pseudo Indices’ on page32 covers syntax for some special indexing operators.

“Array Functions” on page 34 isacatalog of each of the utility functions which allow easy algorithmic pro-
cessing of arrays.

“Array Methods’ on page45 discusses the methods of array objects.
“Array Attributes’ on page 47 presents the attributes of array objects.

“Special Topics’ on page 49 is a collection of special topics, from the organization of the codebase to the
mechanisms for customizing printing.

“Writing a C extension to NumPy” on page 58 is an tutoria on how to write a C extension which uses
NumPy arrays.

“C API Reference” on page 64 is a reference for the C API to NumPy objects (both PyArrayObjects and
UFuncObjects).

“Glossary” on page 73 isaglossary of terms.

Reference materia for the optional packages distributed with Numeric Python are described in the next part,
“Optional Packages’ on page 75.

Where to get information and code

Numerical Python and its documentation are available at SourceForge. The main web siteis:

http://numpy.sourceforge.net

Downloads, bug reports, and patch facility, and rel eases are at the main project page, reachable from the above
site or directly at: http://sourceforge.net/projects/numpy

The Python web site is www.python.org

Many packages are available from third parties that use Numeric to interfaceto a variety of mathematical and
statistical software.

UONINPOIIU]| o

Acknowledgments

Numerical Python isthe outgrowth of along collaborative design process carried out by the Matrix SIG of the
Python Software Activity (PSA). Jim Hugunin, while a graduate student at MIT, wrote most of the code and

initial documentation. When Jim joined CNRI and began working on JPython, he didn’t have the time to main-
tain Numerical Python so Paul Dubois at LLNL agreed to become the maintainer of Numerical Python. David
Ascher, working as aconsultant to LLNL, wrote most of this document, incorporating contributions from Kon-
rad Hinsen and Travis Oliphant, both of whom are major contributors to Numerical Python.

Since the source was moved to SourceForge, the Numeric user community has becomeasignificant part of the
process. Numerica Python illustrates the power of the open source software concept.

Please send comments and corrections to this manua to paul @pfdubois.com, or to Paul F. Dubois, L-264,
Lawrence Livermore National Laboratory, Livermore, CA 94566, U.S.A.

2. Installing NumPy

This chapter explains how to install and test NumPy, from either the source distribution or
from the binary distribution.

Before we start with the actual tutorial, we will describe the steps needed for you to be ableto follow along the
examples step by step. These stepsincluding installing Python, the NumPy extensions, and some toolsand sam-
plefiles used in the examples of thistutorial.

Testing the Python installation

Thefirst stepistoinstall Python if you haven't aready. Python is available from the Python website' s download
directory at http://mww.python.org/downl oad. Click on the link corresponding to your platform, and follow the
instructions described there. When installed, starting Python by typing pyt hon at the shell or double-clicking
on the Python interpreter should give a prompt such as:

Python 1.5.1 (#0, Apr 13 1998, 20:22:04) [MSC 32 bit (Intel)] on wi n32

Copyright 1991-1995 Stichting Mat hemati sch Centrum Amst er dam

>>>
If you have problems getting this part to work, consider contacting alocal support person or emailing python-
help@python.org for help. If neither solution works, consider posting on the comp.lang.python newsgroup (de-
tails on the newsgroup/mailing list are avail able at http://mww.python.org/psa/MailingLists.htmi#clp).

Testing the Numeric Python Extension Installation

The standard Python distribution does not come as of thiswriting with the Numeric Python extensionsinstalled,
but your system administrator may have installed them aready. To find out if your Python interpreter has
NumPy installed, typei nport Numeri ¢ at the Python prompt. You'll see one of two behaviors (throughout
thisdocument, bol d Cour i er Newfontindicates userinput,and st andar d Cour i er Newfont indicates
output):

>>> jnport Numeric
Traceback (innernost |ast):

File "<stdin>", line 1, in ?
I mport Error: No nodul e naned Numeric
>>>

indicating that you don’t have NumPy installed, or:

>>> jnport Numeric
>>>
indicating that you do. If you do, go on to the next step. If you don’t, you have to get the NumPy extensions.

Installing NumPy

Therelease facility at SourceForge is accessed through the project page, http://sourceforge.net/projectsnumpy.
Click onthe“numpy” releases and you will be presented with alist of the available files. The fileswhose names
end in “ .tar.gz" are source code releases. The others are “ prebuilt” for agiven platform. It is possible to get the
latest sources directly from our CV'S repository using the facilities described at SourceForge. Note that while
every effort ismade to ensure that the repository isalways“good”, direct use of the repository issubject to more
errors than using a standard release.

Adwnp Butjesu| e

Installing on Windows

On Windows, we currently have .zip files that should be unzipped into the top of your Python distribution; there
isno “Setup” to run. If you wish to build from source on Windows, the Unix procedure described bel ow can be
used, running python in acommand-linetool.

In general, there may not bea prebuilt version of a particular kind available in every minor release. If you need
aprebuilt version, choose the most recent version available.

Installing on Unix

The source distribution should be uncompressed and unpacked using the the tar program:

csh> tar xfz Nuneric-n.mtar.gz
Follow the instructions in the top-level directory for compilation and installation. Note that there are options
you must consider before beginning. Installation is usually as simple as:

pyt hon setup_all.py install
However, please (please!) see the README itself for the latest details.

Important Tip

Just like al Python modules and packages, the Numeric module can be invoked using either
thei mport Numeri ¢ form, orthef rom Numeric i nport ... form. Because most
of the functionswe'll talk about arein the Numeric module, in this document, al of the code
samples will assume that they have been preceded by a statement:

from Numeric import *

At the SourceForge...

The SourceForge facility isat http://sourceforge.net/projects/numpy. Look on SourceForge aso for various Nu-
meric-based packages supplied by individuals.

The Numeric Discussion List

Y ou can subscribe to adiscussion list about Numeric python using the project page at SourceForge. Thelistis
agood placeto ask questions and get help. Send mail to numpy-discussi on@lists.sourceforge.net.

Bugs and Patches

Bug tracking and patch-management facilities is provided on the SourceForge project page.

CVS Repository

You can get the latest and greatest (albeit less tested and trustworthy) version of Numeric directly from our
CV Srepository.

FTP Site

The FTP Site contains this documentation in several formats, plus maybe some other goodies we have lying
around.

Pyfort

Onetool for connecting Fortran to Numeric and Python is Pyfort, sourceforge.net/projects/pyfortran.

3. The NumTut package

This chapter leads the user through the installation and testing of the NumTut package,
which should have been distributed with this document.

Testing the NumTut package
Thistutorial assumes that the NumTut package has been installed. This package contains afew sample images
and utility functions for displaying arrays and the like. To find out if NumTut has been installed, do:

>>> from Numlut inport *
>>> vi ew(gr eece)

If apicture of agreek street shows up on your screen, you're all set, and you can go to the next chapter.

Possible reasons for failure:

>>> jnport NumTut
Traceback (innernost |ast):
File "<stdin>", line 1, in ?
I nport Error: No nodul e nanmed NumTut
This message indicates that you do not have the NumTut package installed in your PythonPath. NumTut isdis-
tributed along with the Python source in the Demo subdirectory. Copy the NumTut subdirectory somewhere
into your Python path, or just execute python from the Demo directory.

On Win32, the NumTut directory can be placed in the main directory of your Python installation. On Unix, it
can be placed in the site-packages directory of your installation.

Win32

>>> jnport NumTut

Traceback (innernost |ast):

[...]

ConfigurationError: view needs Tkinter on Wn32, and either threads or
the | DLE editor"

afexded InJwnNayl e

or:

ConfigurationError: view needs either threads or the IDLE editor to be
enabl ed.
On Win32 (Windows 95, 98, NT), the Tk toolkit is needed to view the images. Additionally, either the Python
interpreter needs to be compiled with thread support (which istrue in the standard win32 distribution) or you
need to call the NumTut program from the IDLE interactive development environment.

If you do not wish to modify your Python installation to match these requirements, you can simply ignore the
references to the demonstrations which use the vi ew() command later in this document. Using NumPy does
not require image display tools, they just make some array operations easier to understand.

Unix

On Unix machines, NumTut will work best with a Python interpreter with Tk support (not true in the default
configuration), with the Tkinter GUI framework available and optionally with the tkimaging add-on (part of the
Python Imaging Library). If thisis not the case, it will try to use an external viewer whichis able to read PPM
files. The default viewer is’xv’, acommon image viewer available from ftp://ftp.cis.upenn.edu/pub/xv. If xv is
not installed, you will get an error message similar to:

>>> jnport NumrTut

Traceback (innernost |ast):

[...]

ConfigurationError: PPMimge viewer ’'xv' not found
Y ou can configure NumTut to use adifferent image viewer, by typing e.g.:

>>> jnport NumTut

>>> Numrut . vi ew. PPMWI EVER = ' ppnvi ewer’

>>> from Nunifut inport *

>>> vi ew(greece)
If you do not have a PPM image viewer, you can simply ignore the references to the demonstrations which use
thevi ew() command later in this document. Using NumPy does not require image display tools, they just
make some array operations easier to understand.

4. High-Level Overview

In this chapter, a high-level overview of the extensions is provided, giving the reader the
definitions of the key components of the system. This section definesthe concepts used by
the remaining sections.

Numeric Python consists of a set of modules:
 Nuneric. py (anditshelper modulesmul ti array and umat h.)

This module defines two new object types, and a set of functions which manipulate these objects, aswell as
convert between them and other Python types. The objects are the new array object (technically called
nmul ti array objects), and universal functions (technically uf unc objects).

» Other optiona packages shipped with Numeric are discussed in “ Optional Packages” on page 75. Among
these a packages for linear algebra, random numbers, masked or missing values, and Fast Fourier Trans-
forms.

Array Objects

Thearray objects are generally homogeneous collections of potentially large numbers of numbers. All numbers
in amultiarray are the same kind (i.e. number representation, such as double-precision floating point). Array
objects must be full (no empty cells are allowed), and their size isimmutable. The specific numbers within
them can change throughout the life of the array.

Note: In some applications arrays of nhumbers may contain entries representing invalid or missing values. An
optional package“MA” isavailable to represent such arrays. Attempting to do so by using NaN asavalue may
lead to disappointment or lack of portability.

Mathematical operations on arrays return new arrays containing the results of these operations performed ele-
mentwise on the arguments of the operation.

Thesize of an array isthe total number of elements therein (it can be 0 or more). It does not change throughout
thelife of the array.

The shape of an array isthe number of dimensions of the array and its extent in each of these dimensions (it can
be 0, 1 or more). It can change throughout the life of the array. In Python terms, the shape of an array isatuple
of integers, one integer for each dimension that represents the extent in that dimension.

Therank of an array isthe number of dimensions aong which it isdefined. It can change throughout the life of
thearray. Thus, the rank isthe length of the shape.

The typecode of an array is a single character description of the kind of element it contains (number format,
character or Python reference). It determines the itemsize of the array.

Theitemsize of an array is the number of 8-bit bytes used to store asingle element in the array. The total mem-
ory used by an array tendsto its size timesitsitemsi ze, asthe size goesto infinity (there is afixed overhead per
array, aswell as afixed overhead per dimension).

To put thisin more familiar mathematicial language: A vector isarank-1array (it hasonly one dimension along
which it can be indexed). A matrix as used in linear algebrais arank-2 array (it has two dimensions along
which it can beindexed). Therearealso rank-0 arrays, which can hold single scalars -- they have no dimension
along which they can be indexed, but they contain a single number.

Hereis an example of Python code using the array objects(bold text refersto user input, non-bold text to com-
puter output):

MINBAQ PN T-UBIH -

>>> vectorl = array((1,2,3,4,5))

>>> print vectorl

[12 3 45]

>>> matrix1l = array(([0,1],[1,3]))

>>> print matrix1

([0 1]

[1 3]]

>>> print vectorl.shape, matrix1l. shape

(5,) (2,2

>>> print vectorl + vectorl

[2 4 6 8 10]]

>>> print matrixl * matrix1

[[O 1] # note that this is not the matrix

[1 9]] # mul tiplication of linear algebra
If this example does not work for you because it complains of an unknown name “array”, you forgot to begin
your session with

from Nuneric inport *
See page 6.

Universal Functions

Universal functions (ufuncs) are functions which operate on arrays and other sequences. Most ufuncs perform
mathematical operations on their arguments, also elementwise.
Hereis an example of Python code using the ufunc objects:

>>> print sin([pi/2., pi/4., pil6.])

[1. , 0.70710678, 0.5 |

>>> print greater([1,2,4,5], [5,4,3,2])

[00 1 1]

>>> print add([1,2,4,5], [5,4,3,2])

[6 6 7 7]

>>> print add.reduce([1,2,4,5])

12 #1+2+3+4+5

Ufuncs are covered in detail in “Ufuncs’ on page27.

Convenience Functions

The Numeric module provides, in addition to the functions which are needed to create the objects above, a set
of powerful functionsto manipulate arrays, select subsets of arrays based on the contents of other arrays, and
other array-processing operations.

>>> data = arange(10) # conveni ent honol og of builtin
range()

>>> print data

[01 234567 829]

>>> print where(greater(data, 5), -1, data)

[01 2 3 4 5-1-1-1-1] # selection facility

>>> data = resize(array((0,1)), (9, 9))

>>> print data

[[010101010]
[10101010 1]
[01 0101010
[10101010 1]
[010101010]
[10101010 1]

10

oro
=
or o
R O R

=

11

MINBAQ PN T-UBIH -

5. Array Basics

This chapter introduces some of the basic functionswhich will be used throughout the text.

Basics

Before we explore the world of image manipulation as a case-study in array manipulation, we should first de-
fine afew termswhich we'll use over and over again. Discussions of arrays and matrices and vectors can get
confusing due to disagreements on the nomenclature. Hereis abrief definition of the terms used in thistutorial,
and more or less consistently in the error messages of NumPy.

The python objects under discussion are formally called “multiarray” objects, but informally we'll just call
them “array” objectsor just “arrays.” These are different from the array objects defined in the standard Python
arr ay module (which isan older module designed for processing one-dimensional data such as sound files).

These array objects hold their datain a homogeneous block of elements, i.e. their elements all have the same C
type (such as a 64-bit floating-point number). Thisis quite different from most Python container objects, which
can contain heterogeneous collections. (Y ou can, however, have an array of Python objects, as discussed later).

Any given array object has arank, which isthe number of “dimensions” or “axes’ it has. For example, a point
in 3D space[1, 2, 1] isan array of rank 1 — it has one dimension. That dimension hasa length of 3.

As another example, the array

1.0 0.0 0.0

0.0 1.0 2.0
isan array of rank 2 (it is 2-dimensional). The first dimension has a length of 2, the second dimension has a
length of 3. Because the word “dimension” has many different meanings to different folks, in general theword
“axis” will be used instead. Axes are numbered just like Python list indices: they start at 0, and can also be
counted from the end, so that axis-1 isthelast axis of an array, axis -2 is the penultimate axis, etc.

There are two important and potentially unintuitive behaviors of NumPy arrays which take some getting used

to. Thefirst is that by default, operations on arrays are performed element-wise. This means that when adding

two arrays, the resulting array has as elements the pairwise sums of thetwo operand arrays. Thisistrue for all

operations, including multiplication. Thus, array multiplication using the * operator will default to element-

wise multiplication, not matrix multiplication as used in linear algebra. Many people will want to use arrays as
linear algebra-type matrices (including their rank-1 versions, vectors). For those users, the Matrix class pro-

vides amoreintuitive interface. We defer discussion of the Matrix class until later.

The second behavior which will catch many users by surprise is that functions which return arrays which are
simply different views at the same data will in fact share their data. This will be discussed at length when we
have more concrete examples of what exactly this means.

Now that al of these definitions and warnings are laid out, let's see what we can do with these arrays.

Creating arrays from scratch

array() and typecodes
There are many waysto create arrays. The most basic oneisthe use of the ar r ay() function:

>>> a = array([1.2, 3.5, -1])
to make sure this worked, do:

>>> print a

12

[1.2 3.5 -1.]
Thearray(nunbers, typecode=None, savespace=0) function takesthreearguments— the first
oneisthe values, which have to be in aPython sequence object (such as alist or atuple). The optional second
argument is the typecode of the elements. If it is omitted, as in the example above, Python tries to find the one
type which can represent al the elements. The third is discussed in “ Saving space” on page22.

Since the elements we gave our example were two floats and one integer, it chose “float' as the type of the re-
sulting array. If one specifies the typecode, one can specify unequivocally the type of the elements—thisis es-
pecialy useful when, for example, one wants to make sure that an array contains floats even though in some
cases al of its elements are integers:

>>> x,y,z = 1,2,3

>>> a = array([x,VY, z]) # integers are enough for 1, 2 and 3
>>> print a

[1 2 3]

>>> a = array([Xx,y,z], Float) # not the default type

>>> print a
[1. 2. 3.]

Important Tip
Pop Quiz: What will be the type of an array defined as follows:

>>> mystery = array([1, 2.0, -3j])

Hint: - 3] isan imaginary number.
Answer: try it out!

A very common mistake isto call array with a set of numbers as arguments, asinar -
ray(1, 2, 3, 4, 5) . Thisdoesn't produce the expected result as soon as at |east two num-
bers are used, because the first argument to ar r ay () must bethe entire data for thearray -
- thus, in most cases, a sequence of numbers. The correct way to write the preceding invoca-
tionismost likely array((1, 2,3,4,5)).

Possible values for the second argument to the ar r ay creator function (and indeed to any function which ac-
cepts a so-called typecode for arrays) are:

1. Onetype corresponding to single ASCII characters: Char act er .
2. One unsigned numeric type: Unsi gnedI nt 8, used to store numbers between 0 and 255.
3. Many signed numeric types:

» Signed integer choices: I nt, I nt0, 1 nt8,Int16, | nt32, and on some platforms, | nt 64 and
I nt 128 (their ranges depend on their size).

» Foating point choices: FI oat , Fl oat 0, Fl oat 8, Fl oat 16, FI oat 32, Fl oat 64, and on some
platforms, Fl oat 128.

e Complex number choices. Conpl ex, Conpl ex0, Conpl ex8, Conpl ex16, Conpl ex32,
Conpl ex64, Conpl ex128.
The meaning of these is as follows:

» Theversions without any numbers (I nt , Fl oat , Conpl ex) correspond to thei nt , f | oat and
conpl ex datatypesin Python. They are thuslong integers and double-precision floating point num-
bers, with acomplex number corresponding to two double-precision floats.

13

soseg Aelly .

* The versions with a number following correspond to whatever words are available on the specific
platform you are using which have at least that many bitsin them. Thus, | nt O corresponds to the
smallest integer word size available, | nt 8 corresponds to the smallest integer word size available
which has at least 8 bits, etc. The word sizes for the complex numbersrefer to the total number of
bits used by both the real and imaginary parts (in other words, the data portion of an array of N
Conpl ex128 elements uses up the same amount of memory as the data portions of two arrays of
typecode Fl oat 64 with 2N elements).

4. One non-numeric type, PyQbj ect . Arrays of typecode Py Cbj ect are arrays of Python references, and
as such their data area can contain references to any kind of Python objects.
The last typecode deserves a little comment. Indeed, it seemsto indicate that arrays can befilled with any Py-
thon objects. Thisappearsto violate the notion that arrays are homogeneous. In fact, the typecode Py Obj ect
does allow heterogeneous arrays. However, if you plan to do numerical computation, you're much better off
with a homogeneous array with a potentially “large” type than with a heterogeneous array. This is because a
heterogeneous array stores references to objects, which incurs a memory cost, and because the speed of com-
putation is much slower with arrays of Py Obj ect 'sthan with uniform number arrays. Why doesit exist, then?

A very useful features of arrays isthe ability to slice them, dice them, select and choose from them, etc. This
feature is so nice that sometimes one wants to do the same operations with, e.g., arrays of class instances. In
such cases, computation speed is not asimportant as convenience. Also, if the array isfilled with objects which
are instances of classes which define the appropriate methods, then NumPy will et you do math with those ob-
jects. For example, if one creates an object classwhich hasan__add___ method, then arrays (created with the
Py(Cbj ect typecode) of instances of such a class can be added together.

Multidimensional Arrays
The following example shows one way of creating multidimensional arrays:

>>> ma = array([[1,2,3],[4,5,6]])
>>> print ma
[[1 2 3]
[4 5 6]]
Thefirst argumentto ar r ay() inthecode above isasinglelist containing two lists, each containing three e-
ements. If we wanted floats instead, we could specify, as discussed in the previous section, the optional type-
code we wished:

>>> ma_floats = array([[1,2,3],[4,5,6]], Float)
>>> print ma_floats
[[1. 2. 3.]
[4. 5 6.]]
Thisarray alows usto introduce the notion of “shape’. The shape of an array isthe set of numbers which define
its dimensions. The shape of the array ma defined above is 2 by 3. More precisely, al arrays have a shape at-
tribute which is atuple of integers. So, in this case:

>>> print ma. shape

(2, 3)
Using the earlier definitions, this is a shape of rank 2, where the first axis has length 2, and the seond axis has
length 3. Therank of anarray Aisawaysequal tol en(A. shape) .

Note that shape isan attribute of ar r ay objects. It isthefirst of several which we will seethroughout this
tutorid. If you're not used to object-oriented programming, you can think of attributes as “features’ or “quali-
ties” of individua arrays. The relation between an array and its shape is similar to the relation between a person
and their hair color. In Python, it's called an object/attribute relation.

What if one wantsto change the dimensions of an array? For now, let us consider changing the shape of an array
without making it “ grow.” Say, for example, we want to make the 2x3 array defined above (ma) an array of rank
1

>>> flattened_ma = reshape(m, (6,))
>>> print flattened_ma

14

[1 2345 6]
One can change the shape of arrays to any shape as long as the product of all the lengths of all the axesis kept
constant (in other words, aslong as the number of elementsin thearray doesn’t change):

>>> a = array([1,2,3,4,5,6,7,8])
[123456 7 8]
>>> print a

>>> b = reshape(a, (2,4)) # 2*4 ==
[[1 2 3 4]

[56 7 8]]
>>> print b
>>> ¢ = reshape(b, (4,2) # 4*2 ==
>>> print ¢

[[12]

[3 4]

[5 6]

[7 8]]

Notice that we used a new function, r eshape() . It, likear ray(), isafunction defined in the Numeri c
module. It expects an array asits first argument, and a shape as its second argument. The shape hasto be a se-
guence of integers (alist or atuple). Keep in mind that a tuple with a single element needs a comma at the end;
theright shape tuple for arank-1 array with 5 elementsis (5,), not (5) .

One nice feature of shape tuplesisthat one entry in the shapetupleisallowed to be - 1. The - 1 will be auto-
matically replaced by whatever number is needed to build a shape which does not change the size of the array.
Thus:

>>> a = reshape(array(range(25)), (5,-1))

>>> print a, a.shape

[l 0O 1 2 3 4]

[5 6 7 8 9]

[10 11 12 13 14]

[15 16 17 18 19]

[20 21 22 23 24]] (5, 5)
The shape of an array isamaodifiable attribute of the array. Y ou can therefore change the shape of an array sim-
ply by assigning anew shapeto it:

>>> a = array([1,2,3,4,5,6,7,8,9, 10])

>>> a. shape
(10,)

>>> a. shape

>>> print a
[[1 2 3
[6 7 8

>>> a. shape

>>> print a
[[1]

[2]

[3]

[4]

[

[

[

[

(2,5)

5]
10]]
(10, 1) # second axis has length 1

I o h

5]

6]

7]

8]

[9]

[10]]

>>> a.shape = (5,-1) # note the -1 trick described above
>>> print a

15

soseg Aelly .

([1 2
[3 4]
[5 6]
[7 8]
[9 10]]

Asin therest of Python, violating rules (such as the one about which shapes are allowed) results in exceptions:

>>> a.shape = (6, -1)
Traceback (innernost |ast):
File "<stdin>", line 1, in ?
Val ueError: total size of new array must be unchanged

For Advanced Users
The default printing routine provided by the Numeric module prints arrays as follows:
1 Thelast axisisalways printed |eft to right
2 Thenext-to-last axisis printed top to bottom

The remaining axes are printed top to bottom with increasing numbers of separators.

This explains why rank-1 arrays are printed from left to right, rank-2 arrays have thefirst di-
mension going down the screen and the second dimension going from |eft to right, etc.

If you want to change the shape of an array so that it has more elementsthan it started with (i.e. grow it), then
you have many options: One solutionisto usethe concat () method discussed later. An alternativeisto use
thear ray() creator function with existing arrays as arguments:

>>> print a
[01 23456 6 7]

>>> b = array([a,a])
>>> print b
[[1 23456 7 8]
[123456 7 8]]
>>> print b.shape
(2, 8)

resize

A final possibility isthe r esi ze(') function, which takes a “base” array asits first argument and the desired

shape as the second argument. Unlike r eshape() , the shape argument to r esi ze() can corresponds to a
smaller or larger shapethan theinput array. Smaller shapeswill result in arrayswith the data at the “ beginning”

of the input array, and larger shapesresult in arrayswith data containing as many replications of the input array
as are needed to fill the shape. For example, starting with a simple array

>>> base = array([0, 1])
one can quickly build alarge array with replicated data:

>>> big = resize(base, (9,9))
>>> print big

[[01 0101010
[10101010 1]

[01 0101010]
[10101010 1]

[01 0101010]
[10101010 1]

[01 0101010]

16

[10101010 1]
[01 0101010]]
and if you imported the vi ew function from the NuniTut package, you can do:

>>> vi ew(resi ze(base, (100, 100)))

grey grid of horizontal lines is shown

>>> view(resize(base, (101,101)))

grey grid of alternating black and white pixels is shown

For Advanced Users

Sections denoted “ For Advanced Users’ will be used to indicate aspects of the functions
which may not be needed for afirst introduction at NumPy, but which should be mentioned
for the sake of completeness.

Thear r ay constructor takes a mandatory dat a argument, an optional typecode, and op-
tional savespace argument, and an optional copy argument. If the dat a argument isa
sequence, then array creates a new object of type multiarray, and fills the array with the ele-
ments of the dat a object. The shape of the array is determined by the size and nesting ar-
rangement of the elements of data

If dat a isnot a sequence, then the array returned is an array of shape() (the empty tuple),
of typecode’ O , containing asingle element, which is dat a.

Creating arrays with values specified "on-the-fly'

zeros() and ones()

Often, one needs to manipulate arrays filled with numbers which aren't available beforehand. The Numeric
module provides a few functions which create arrays from scratch:

zeros() andones() simply create arrays of a given shapefilled with zeros and ones respectively:

>>> z = zeros((3,3))

>>> print z

[[0 0 O]

[0 0 0]

[0 0 0]]

>>> 0 = ones([2, 3])

>>> print o

[([111]

[1 1 1]]
Note that the first argument is a shape —it needsto bealist or atuple of integers. Also note that the default type
for thereturned arraysis | nt , which you can feel free to override using something like:

>>> 0 = ones((2,3), Float)
>>> print o

[[1. 1. 1.]
[1. 1. 1.]]

arrayrange()

Thear rayrange() functionissimilar to ther ange() function in Python, except that it returns an array as
opposed to alist.

>>> r = arrayrange(10)

17

soseg Aelly .

>>> print r
[01 234567 829]
Combining thear r ayr ange() withther eshape() function, we can get:

>>> big = reshape(arrayrange(100), (10, 10))
>>> print big
[[O 1 2 3 4 5 6 7 8 9]
[10 11 12 13 14 15 16 17 18 19]
[20 21 22 23 24 25 26 27 28 29]
[30 31 32 33 34 35 36 37 38 39]
[40 41 42 43 44 45 46 47 48 49]
[50 51 52 53 54 55 56 57 58 59]
[60 61 62 63 64 65 66 67 68 69]
[70 712 72 73 74 75 76 77 78 79]
[80 81 82 83 84 85 86 87 88 89]
[90 91 92 93 94 95 96 97 98 99]]
>>> vi ew(reshape(arrayrange(10000), (100, 100)))
array of increasing lightness fromtop down (slowy) and fromleft to
right (faster) is shown
arange() isashorthand for arr ayr ange() .

One can set the gtart, stop and step arguments, which allows for more varied ranges:
>>> print arrayrange(10,-10,-2)
[0 8 6 4 2 0 -2 -4 -6 -8]
An important feature of arrayrangeis that it can be used with non-integer starting points and strides:

>>> print arrayrange(5.0)

[0. 1. 2. 3. 4.]

>>> print arrayrange(0, 1, .2)

[O. 0.2 0.4 0.6 0.8]
If you want to create an array with just one value, repeated over and over, you can use the* operator applied to
lists

>>> a = array([[3]*5]*5)
>>> print a
[[3 333 3]
[3 333 3]
[3 333 3]
[3 333 3]
[3 333 3]]

but that is relatively slow, since the duplication is done on Python lists. A quicker way would be to start with
O'sand add 3:

>>> g = zeros([5,5]) + 3
>>> print a
[[3 333 3]
[3 333 3]
[3 333 3]
[3 333 3]
[3 333 3]]

The optional typecode argument can force the typecode of the resulting array, which is otherwise the “highest”
of the starting and stopping arguments. The starting argument defaultsto O if not specified. Note that if atype-
code is specified which is “lower” than that which arrayrange would normally use, the array is the result of a
precision-losing cast (around-down, asthat used in theast ype method for arrays.)

18

Creating an array from a function: fromfunction()

Finally, one may want to create an array with contents which are the result of afunction evaluation. Thisisdone
using thef ronf uncti on() function, which takes two arguments, a shape and a callable object (usually a
function). For example:

>>> def dist(x,y):
return (x-5)**2+(y-5)**2 # di stance from point (5,5) squared

>>> m = fronfunction(dist, (10, 10))
>>> print m

[[50 41 34 29 26 25 26 29 34 41]
[41 32 25 20 17 16 17 20 25 32]
[34 25 18 13 10 9 10 13 18 25]

[29 2013 8 5 4 5 8 13 20]
[26 17 10 5 2 1 2 5 10 17]
[25 16 9 4 1 0 1 4 9 16]
[26 17 10 5 2 1 2 5 10 17]
[29 2013 8 5 4 5 8 13 20]

[34 25 18 13 10 9 10 13 18 25]
[41 32 25 20 17 16 17 20 25 32]]
>>> vi ew(fronfunction(dist, (100,100))
shows inmage which is dark in topleft corner, and lighter away fromit.
>>> m = fronfunction(lanbda i,j,k: 100*(i+1)+10*(j+1)+(k+1), (4,2,3))
>>> print m
[[[111 112 113]
[121 122 123]]
[[211 212 213]
[221 222 223]]
[[311 312 313]
[321 322 323]]
[[411 412 413]
[421 422 423]]]
By examining the above examples, one can seethat f r onf unct i on() createsan array of the shape specified
by its second argument, and with the contents corresponding to the value of the function argument (the first ar-
gument) evaluated at the indices of thearray. Thusthevaueof n{ 3, 4] inthefirst example aboveisthe value

of di st whenx=3 andy=4. Similarly for thelambda function in the second example, but with arank-3array.

Theimplementation of fromfunction consists of:

def fronfunction(function, dinmensions):
return apply(function, tuple(indices(di nmensions)))

which means that the function function is called for each element in the sequence indices(dimensions). As de-

scribed in the definition of indices, this consists of arrays of indices which will be of rank one less than that
specified by dimensions. This means that the function argument must accept the same number of arguments as
there are dimensions in dimensions, and that each argument will be an array of the same shape as that specified
by dimensions. Furthermore, thearray which is passed asthe first argument corresponds to the indices of each

element in the resulting array along the first axis, that which is passed as the second argument corresponds to
the indices of each element in the resulting array along the second axis, etc. A consequence of thisis that the
function which is used with fromfunction will work as expected only if it performs a separable computation on
its arguments, and expects its arguments to be indices along each axis. Thus, no logical operation on the argu-

ments can be performed, or any non-shape preserving operation. The first example below satisfies these re-

quirements, hence works (the x and y arrays both get 10x10 arrays as input corresponding to the values of the
indices along the two dimensions), while the second array attempsto do acomparison test on an array of indi-
ces, which fails.

>>> def buggy(test):

19

soseg Aelly .

if test > 4: return 1
else: return O

>>> print fronfunction(buggy, (10,))
Traceback (innernmost |ast):

File "<stdin>", line 1, in ?

File "C \PYTHON LI B\ Nuneric. py", line 157, in fronfunction
return apply(function, tuple(indices(di nensions)))

File "<stdin>", line 2, in buggy

TypeError: Conparison of nultiarray objects is not inplenmented.

identity()

The simplest array constructor isthei denti t y(n) function, which takes a single integer argument and re-
turns a square identity array of that size of integers:

>>> print identity(5)
[[1 000 0]

[01
[0O
[0O
[0O
>>> view(identity(100))

shows bl ack square with a single white diagonal

Coercion and Casting

WEe ve mentioned the typecodes of arrays, and how to create arrays with the right typecode, but we haven't cov-
ered what happens when arrays with different typecodes interact.

Automatic Coercions and Binary Operations

The rules followed by NumPy when performing binary operations on arrays mirror those used by Python in
general. Operations between numeric and non-numeric types are not allowed (e.g. an array of characterscan't
be added to an array of numbers), and operations between mixed number types (e.g. floats and integers, floats
and omplex numbers, or in the case of NumPy, operations between any two arrayswith different numeric type-
codes) first perform acoercion of the’smaller’ numeric typeto the type of the ‘larger’ numeric type. Findly,
when scalars and arrays are operated on together, the scalar is converted to arank-0 array first. Thus, adding a
“small” integer to a“large” floating point array is equivalent to first casting the integer “up” to the typecode of
the array:

>>> arange(0, 1.0, .1) + 12

array([12. , 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8,

12.9])
The automatic coercions are described in Figure 1. Avoiding upcasting is discussed in “ Saving space” on

page 22.

20

—— Sane-type coercion
Unsi gnedl nt 8 }\ | Int8 }——)I Fl oat 8 | _______

\

> Different-type coercion

| I nt 16 |-> Floatie |

| Int32 [-> Floats2 | >| Conpl ex32 |
v A 4 :\\ A 4
| I nt 64 }——>| Fl oat 64 }\\ \‘)I Conpl ex64 |
| | ntv128 > F oe:: 128 | >| Oorrpl‘;x128 | | Char

Figurel Up-castsareindicated with arrows. Down-casts are allowed by the
ast ype() method, but may result in loss of information.

Deliberate up-casting: The asarray function

One more array constructor isthe asar ray() function. It is used if you want to have an array of a specific
typecode and you don't know what typecode array you have (for example, in ageneric function which can op-
erate on al kinds of arrays, but needs them to be converted to complex arrays). If the array it gets asan argu-
ment is of the right typecode, it will get sent back unchanged. If the array isnot of the right typecode, each
element of the new array will be the result of the coercion to the new type of the old elements. asarray()

will refuseto operate if there might be loss of information -- in other words, asar r ay() only casts’up’.

asar r ay isalso used when you have afunction that operates on arrays, but you want to allow peopleto call

it with an arbitrary python sequence object. This gives your function abehavior similar to that of most of the
builtin functions that operate on arrays.

The typecode value table

The typecodes identifiers (FI oat 0, etc.) have as values single-character strings. The mapping between type-
code and character strings is machine dependent. An example of the correspondences between typecode char-
acters and the typecode identifiers for 32-bit architectures are shown in Table 3-X.

Tablel1: Typecode character/identifier table on a Pentium computer

Character ;; toeis ﬁi(t); Identifiers
D 16 128 Conpl ex, Compl ex64
F 8 64 Conpl ex0, Conpl ex16, Conpl ex32, Conpl ex8
d 8 64 Fl oat, Float64
f 4 32 Fl oat 0, Fl oat16, Float32, Float8

21

soseg Aelly .

Table1: Typecode character/identifier table on a Pentium computer

Character ;; ?; ﬁi?; Identifiers
I 4 32 I nt
1 1 8 IntO, Int8
S 2 16 I nt16
i 4 32 I nt 32

Consequences of silent upcasting

When dealing with very large arrays of floatsand if precision isnot important (or arrays of small integers), then
it may be worthwhileto cast thearraysto “small” typecodes, such asl nt 8,1 nt 16 or Fl oat 32. Asthe stan-
dard Python integers and floats correspond to the typecodes | nt 32 and FI oat 64, using them in apparently
“innocent” ways will result in up-casting, which may null the benefit of the use of small typecode arrays. For
example:

>>> nyl argearray. typecode()

"f # a.k.a. Float32 on a Pentium
>>> myl argearray.itemnsize()

4

>>> myl argearray = nylargearray + 1# 1 is an Int64 on a Pentium
>>> myl argearray. typecode() # see Fig. 1 for explanation.
ldl

>>> myl argearray.itemnsize()

8

Note that the sizesreturned by thei t ensi ze() method are expressed in bytes.

Saving space

Numeric arrays can be created using an optional, keyworded argument to the constructor, savespace. If
savespaceis setto 1, Numeric will attempt to avoid the silent upcasting behavior. The status of an array can be
queried with the spacesaver() method. If x.spacesaver() istrue, x has its space-saving flag set. The flag can be
set with the savespace method: x.savespace(1) to set it, x.savespace(0) to clear it.

Deliberate casts (potentially down): the astype method

You may aso force NumPy to cast any number array to another number array. For example, to take an array
of any numeric type (IntX or FloatX or ComplexX or Unsignedint8) and convert it to a 64-bit float, one can do:

>>> fl oatarray = otherarray. astype(Fl oat 64)
The typecode can be any of the number typecodes, “larger” or “smaller". If itis larger, thisisacast-up, as if
asarray() had been used. If it issmaller, the standard casting rules of the underlying language (C) are used,
which means that truncation or loss of precision can occur:

>>> print X

[o. 0.4 0.8 1.2 1.6]

>>> x.astype(lnt)

array([0, 0, 0, 1, 1])
If the typecode used with ast ype() istheorigina array’s typecode, then a copy of the original array is re-
turned.

22

Operating on Arrays

Simple operations

If you have a keen eye, you have noticed that some of the previous examples did something new. It added a
number to an array. Indeed, most Python operations applicable to numbersare directly applicable to arrays:

>>> print a

[1 2 3]

>>> print a * 3

[3 6 9]

>>> print a + 3

[4 5 6]
Note that the mathematical operators behave differently depending on the types of their operands. When one of
the operandsis an array and the other is a number, the number is added to all the elements of the array and the
resulting array isreturned. Thisis called broadcasting. Thisalso occursfor unary mathematical operations such
as sin and the negative sign

>>> print sin(a)

[0.84147098 0.90929743 0.14112001]

>>> print -a

[-1 -2 -3]
When both elements are arrays with the same shape, then anew array is created, where each element isthe sum
of the corresponding elementsin the original arrays:

>>> print a + a

[2 4 6]
If the operands of operations such as addition are arrays which have the same rank but different non-integer di-
mensions, then an exception is generated:

>>> print a

[1 2 3]

>>> b = array([4,5,6,7]) # note this has four elenents

>>> print a + b

Traceback (innernost |ast):

File "~ “<stdin>", line 1, in ?

ArrayError: frames are not aligned
Thisis because there is no reasonable way for NumPy to interpret addition of a(3,) shaped array anda(4,)
shaped array.

Notewhat happens when adding arrays with different rank

>>> print a
[1 2 3]

>>> print b
[[4 8 12]

[5 9 13]

[6 10 14]

[7 11 15]]
>>> print a + b
[[510 15]

[6 11 16]

[7 12 17]

[8 13 18]]

Thisis another form of broadcasting. To understand this, one needs to look carefully at the shapesof a and b:

>>> a.shape

(3,)

>>> b. shape

23

soseg Aelly .

(4,3)
Because array a’s last dimension had length 3 and array b’ s last dimension also had length 3, those two dimen-
sions were “matched” and a new dimension was created and automatically “assumed” for array a. The dataal-
ready in a was “replicated” as many times as needed (4, in this case) to make the two shapes of the operand
arrays conform. Thisreplication (broadcasting) occurs when arrays are operands to binary operations and their
shapes differ and when the following conditions are true:

» dtarting from the last axis, the axis lengths (dimensions) of the operands are compared
 if both arrays have an axis length greater than 1, an exception is raised

» if onearray has an axis length greater than 1, then the other array’s axisis “ stretched” to match the
length of the first axis -- if the other array’s axis is not present (i.e., if the other array has smaller
rank), then anew axis of the same length is created.

This algorithm is complex, but intuitivein practice. For more details, consult the Numeric Reference.

Getting and Setting array values

Just like other Python seguences, array contents are manipulated with the [] notation. For rank-1 arrays, there
are no differences between list and array notations:

>>> a = arrayrange(10)

>>> print a[0] # get first elenent

0

>>> print af1:5] # get second through fifth el enent
[12 3 4]

>>> print a[:-1] # get |ast el enent

9

Thefirst difference with lists comes with multidimensional indexing. If an array is multidimensional (of rank
> 1), then specifying asingle integer index will return an array of dimension one less than the origina array.

>>> a = arrayrange(9)
>>> a.shape = (3,3)
>>> print a

[[0 1 2]
[3 4 5]
[6 7 8]]
>>> print af0] # get first row, not first elenent!
[01 2]
>>> print af 1] # get second row
[3 4 5]

To get to individual elementsin arank-2 array, one specifies both indices separated by commas:
>>> print a[o0, 0] # get elt at first row, first colum
0
>>> print a0, 1] # get elt at first row, second columm
1
>>> print a1, 0] # get elt at second row, first colum
3
>>> print af2,-1] # get elt at third row, |ast colum
8

Of course, the[] notation can be used to set values as well:

>>> a[0,0] = 123
>>> print a
[[123 1 2]

[3 4 5]

[6 7 8]]

24

Note that when referring to rows, theright hand side of the equal sign needsto be a sequencewhich “fits’ in the
referred array subset (in the code sample below, a 3-element row):

>>> a[1l] = [10, 11, 12]
>>> print a
[[123 1 2]

[10 11 12]

[6 7 8]]

Slicing Arrays

The standard rules of Python dlicing apply to arrays, on a per-dimension basis. Assuming a 3x3 array:

>>> a = reshape(arrayrange(9), (3, 3))
>>> print a
[[012]
[3 4 5]
[6 7 8]]
The plain [:] operator slices from beginning to end:

>>> print af[:,:]
[[01 2]
[3 4 5]
[6 7 8]]

In other words, [:] with no argumentsis the sameas|[:] for lists—it can beread all indices along this axis. So,

to get the second row along the second dimension:

>>> print af:, 1]

[1 4 7]
Note that what wasa“column” vector isnow a “row” vector -- any “integer dice” (asin the 1 in the example
above) results in areturned array with rank one less than theinput array.

If one does not specify asmany slices asthere are dimensionsin an array, then the remaining slices are assumed
tobeal". If Aisarank-3 array, then

A1l == Al1,:] == A[1,:,:]
Thereis one addition to the slice notation for arrays which does not exist for lists, and that is the optional third
argument, meaning the ““step size" also called stride or increment. Its default valueis 1, meaning return every
element in the specified range. Alternate values allow oneto skip some of the elementsin the dice:

>>> a = arange(12)
>>> print a
[0 1 2 3 4 5 6 7 8 9 10 11]
>>> print af::2] # return every *other* el enent
[0 2 4 6 8 10]
Negative strides are allowed as long as the starting index is greater than the stopping index:

>>> a = reshape(arrayrange(9), (3, 3))
>>> print a
[[012]

[3 4 5]

[6 7 8]]

>>> print a[:, O]
[0 3 6]

>>> print a[0:3, 0]
[0 3 6]

>>> print a[2:-1, 0]
[6 3 0]

25

soseg Aelly .

If anegative strideis specified and the starting or stopping indices are omitted, they default to “end of axis’ and
“beginning of axis” respectively. Thus, the following two statements are equivalent for the array given:

>>>

print a[2:-1, 0]

[6 3 0]

>>>

print a[::-1, 0]

[6 3 0]

>>>
[[6
[3
[0
>>>
[[8
[5
[2

print a[::-1] # this reverses only the first axis
7 8]

4 5]

1 2]]

print a[::-1,::-1] # this reverses both axes

7 6]

4 3]

10]]

One final way of slicing arraysis with the keyword . . . This keyword is somewhat complicated. It standsfor
“however many “:' | need depending on the rank of the object I'm indexing, so that the indices| *do* specify
are at the end of the index list as opposed to the usual beginning.™

So, if one has arank-3 array A, then Al . . ., 0] isthesamethingasA[:, :, 0] but if B isrank-4, then
B[...,0] isthesamethingas:B[:,:,:,0].Onlyone. .. isexpandedin anindex expression, soif one
hasarank-5array C, then: C[...,0,...] isthesamethingas C[:,:,:,0,:].

26

6. Ufuncs

What are Ufuncs?

The operations on arrays that were mentioned in the previous section (element-wise addition, multiplication,

etc.) all share some features -- they all follow similar rules for broadcasting, coercion and “element-wise oper-
ation". Just like standard addition is available in Python through the add function in the operator module, array
operations are available through callable objects as well. Thus, the following objects are available in the Nu-

meric module:

Table2: Universal Functions, or uf uncs. The operators which invoke them when
applied to arrays are indicated in parentheses. The entriesin danted
typeface refer to unary ufuncs, while the others refer to binary ufuncs.

add (+) subtract (-) nultiply (%) di vide (/)

remai nder (% power (**) arccos arccosh

arcsin arcsi nh arctan arct anh

cos cosh exp | og

 0g10 sin si nh sqrt

tan t anh maxi mum m ni mum

conj ugat e equal (== not _equal (!=) greater (>)
greater_equal (>=) less (<) | ess_equal (<=) | ogi cal _and (and)
| ogi cal _or (or) | ogi cal _xor | ogi cal _not (not) bitw se_and (&)
bitw se_or (|) bi tw se_xor bitwi se_not (~)

All of these ufuncs can be used asfunctions. For example, touseadd, which isabinary ufunc (i.e. it takes two
arguments), one can do either of:

>>> a = arange(10)

>>> print add(a, a)

[0 2 4 6 8 10 12 14 16 18]

>>> print a + a

[0 2 4 6 8 10 12 14 16 18]
In other words, the + operator on arrays performs exactly the same thing as the add ufunc when operated on
arrays. For aunary ufunc such as si n, one can do, e.g.:

>>> a = arange(10)
>>> print sin(a)
[O. 0.84147098 0.90929743 0.14112001 -0.7568025 -0.95892427
-0.2794155 0.6569866 0.98935825 0.41211849]
Unary ufuncs return arrays with the same shape as their arguments, but with the contents corresponding to the
corresponding mathematical function applied to each element (sin(0)=0, sin(1)=0.84147098, etc.).

There are threeadditional features of ufuncs which make them different from standard Python functions. They
can operate on any Python sequence in addition to arrays; they can take an “output” argument; they have at-
tributes which are themselves callable with arrays and sequences. Each of these will be described in turn.

27

sounyn e

Ufuncs can operate on any Python sequence

Ufuncshave so far been described as callable objects which take either one or two arrays as arguments (depend-
ing on whether they are unary or binary). In fact, any Python sequence which can be the input to the array()
constructor can be used. The return value from ufuncsisaways an array. Thus:

>>> add([1,2,3,4], (1,2,3,4))
array([2, 4, 6, 8])

Ufuncs can take output arguments

In many computations with large sets of numbers, arrays are often used only once. For example, a computation
on alarge set of numbers could involve the following step

dat aset = dataset * 1.20
This operation as written needs to create a temporary array to store the results of the computation, and then
eventually free the memory used by the original dataset array (provided there are no other references to the data
it contains). It is more efficient, both in terms of memory and computation time, to do an “in-place” operation.
This can be done by specifying an existing array as the place to store the result of the ufunc. In this example,
one can write:

mul tiply(dataset, 1.20, dataset)
Thisis not a step to take lightly, however. For example, the “big and slow” version (dat aset = dat aset
* 1. 20) and the “small and fast” version above will yield different resultsin two cases:

» If thetypecode of thetarget array is not that which would normally be computed, the operation will
fail and raise a TypeError exception.

» If the target array corresponds to a different “view” on the same data as either of the source arrays,
inconsistencies will result. For example,
>>> a = arange(5, typecode=Fl oat 64)
>>> print a[::-1] * 1.2
[4.8 3.6 2.4 1.2 0.]
>>> multiply(al::-1], 1.2, a)
array([4.8, 3.6, 2.4, 4.32, 5.76])
>>> print a
[4.8 3.6 2.4 4.32 5.76]

This is because the ufunc does not know which arrays share which data, and in this case the over-
writing of the data contentsfollowsa different path through the shared data space of the two arrays,
thus resulting in strangely distorted data.

Ufuncs have special methods

The reduce ufunc method

If you don't know about the r educe command in Python, review section 5.1.1 of the Python Tutorial (http://
www.python.org/doc/tut/functional .html). Briefly, r educe is most often used with two arguments, a callable
object (such as afunction), and a sequence. It callsthe callable object with the first two element of the se-

quence, then with the result of that operation and the third element, and so on, returning at the end the succes-

sive “reduction” of the specified callable object over the sequence elements. Similarly, ther educe method of
ufuncsiis caled with a sequence as an argument, and performs the reduction of that ufunc on the sequence. As
an example, adding all of the elementsin arank-1 array can be done with:

>>> a = array([1,2,3,4])
>>> print add.reduce(a)
10
When applied to arrayswhich are of rank greater than one, the reduction proceeds by default along the first axis:

>>> b = array([[1,2,3,4],[6,7,8,9]])
>>> print b

28

[[1 2 3 4]

[6 7 8 9]]

>>> print add.reduce(b)
[7 9 11 13]

A different axis of reduction can be specified with a second integer argument:

>>> print b

[[1 2 3 4]

[6 7 8 9]]

>>> print add.reduce(b, 1)
[10 30]

The accumulate ufunc method

Theaccumnul at e ufunc method issimular tor educe, except that it returnsan array containing the interme-

diate results of the reduction:
>>> a = arange(10)
>>> print a

[01 234567 809]
>>> print add.accumnul at e(a)

[0O 1 3 6 10 15 21 28 36 45]

>>> print add.reduce(a)
45

The outer ufunc method

0, 0+1, O0+1+2, 0+1+2+3,

sane as add.accumulate(...)[-1]

.19

Thethird ufunc method isout er , which takestwo arrays as arguments and returns the “ outer ufunc” of thetwo
arguments. Thustheout er method of thenul t i pl y ufunc, resultsin the outer product. The outer method is

only supported for binary methods.

>>> print a

[0 123 4]

>>> print b

[0 12 3]

>>> print add. outer(a,b)
[[01 2 3]

[1 2 3 4]

[2 3 4 5]

[3 45 6]

[4 56 7]]

>>> print multiply.outer(b, a)
[[f O 0O 0 0 0]

[0 1 2 3 4]

[0 2 4 6 38]

[0O 3 6 9 12]]

>>> print power.outer(a,b)
[l 1 0o 0 0]

[1 1 1 1]

[1 2 4 8]

[1 3 9 27]

[1 4 16 64]]

The reduceat ufunc method

Thefinal ufunc method isther educeat method, which I’ dloveto explainit, but | don’t understand it (XX X).

29

sounyn e

Ufuncs always return new arrays
Except when the’ output’ argument are used as described above, ufuncs always return new arrays which do not
share any datawith the input array.

Which are the Ufuncs?

Table 1 lists all the ufuncs. We will first discuss the mathematical ufuncs, which perform operationsvery sim-
ilar to the functionsin the mat h and cmat h modules, albeit elementwise, on arrays. These come in two forms,
unary and binary:

Unary Mathematical Ufuncs (take only one argument)

The following ufuncs apply the predictable functions on their single array arguments, one element at a time:
arccos,arccosh, arcsin, arcsinh, arctan, arctanh, cos, cosh, exp, |og, |0gl0,
sin, sinh, sqrt, tan, tanh.

Asan example:

>>> print X

[012 3 4]

>>> print cos(x)

[1. 0.54030231 -0.41614684 -0.9899925 -0.65364362]
>>> print arccos(cos(x))

[O. 1. 2 3 2.28318531]

not a bug, but wraparound: 2*pi % is 2.28318531
The conj ugat e ufunc takes an array of complex numbers and returns the array with entries which are the
complex conjugates of the entriesin the input array. If itis called with real numbers, acopy of thearray isre-
turned unchanged.

Binary Mathematical Ufuncs

These ufuncstake two arrays as arguments, and perform the specified mathematical operation on them, one pair
of elements at atime: add, subt ract , mul ti pl y, di vi de, r enai nder, power .

Logical Ufuncs

The “logical" ufuncs also perform their operations on arraysin elementwise fashion, just like the “"mathemat-
ica" ones.

Two are specia (maxi mumand mi m num in that they return arrays with entries taken from their input arrays:

>>> print X

[01 2 3 4]

>>> print y

[2. 2.5 3. 3.5 4.]

>>> print maxi mum(x, V)

[2. 2.5 3. 3.5 4.]

>>> print mnimumx, V)

[0. 1. 2. 3. 4.]
The others al return arrays of O'sor 1's: equal , not _equal , gr eat er, greater _equal , | ess,
| ess_equal, |l ogi cal _and, | ogical _or,l ogical _xor,logical _not, bitwi se_and,
bitw se_or,bitw se_xor,bitw se_not.

These are fairly self-explanatory, especialy with the associated symbols from the standard Python version of
the same operationsin Table 1 above. The | ogi cal _* ufuncs perform their operations (and, or, etc.) using
the truth value of the elements in the array (equality to 0 for numbers and the standard truth test for PyObject
arrays). Thebi t wi se_* ufuncs, on the other hand, can be used only with integer arrays (of any word size),
and will return integer arrays of the larger bit size of the two input arrays:

>>> X

30

array([7, 7, 0],'1")

>>> y

array([4, 5, 6])

>>> pitwi se_and(Xx,y)

array([4, 5, 0],"i")
We've already discussed how to find out about the contents of arrays based on the indices in the arrays— that's
what the various slice mechanisms are for. Often, especialy when dealing with the result of computations or
data analysis, one needsto " pick out" parts of matrices based on the content of those matrices. For example, it
might be useful to find out which elements of an array are negative, and which are positive. The comparison
ufuncs are designed for just thistype of operation. Assume an array with various positive and negative numbers
init (for the sake of the example welll generate it from scratch):

>>> print a
[[0O 1 2 3 4]
[5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]
[20 21 22 23 24]]
>>> b = sin(a)
>>> print b
[[o. 0.84147098 0.90929743 0.14112001 -0.7568025]
[-0.95892427 -0.2794155 0.6569866 0.98935825 0.41211849]
[-0.54402111 -0.99999021 -0.53657292 0.42016704 0.99060736]
[0.65028784 -0.28790332 -0.96139749 -0.75098725 0.14987721]
[0.91294525 0.83665564 -0.00885131 -0.8462204 -0.90557836]]
>>> print |ess_equal (b, 0)
[[1 000 1]
[11000]
[1 110 0]
[01110]
[0 011 1]]
Thislast example has 1' swhere the corresponding elements are less than or equal to 0, and O’ severywhere el se.

>>> view(greater(greeceBW .3))
shows a binary i mage with white where the pixel value was greater than
.3

Ufunc shorthands

Nunmer i ¢ defines afew functions which correspond to often-used uses of ufuncs: for example, add. r e-
duce() issynonymous with thesumn() utility function:

>>> a = arange(b) # [0 1 2 3 4]
>>> print suma) #0+1+2+ 3+ 4
10

Similarly, cumsumis equivalent to add. accumul at e (for “cumulative sum™), pr oduct tormul ti -
ply.reduce, andcunproduct tonul ti ply.accumul at e.

Additional “utility" functions which are often useful are al | t r ue and sonet r ue, which are defined as
| ogi cal _and. reduce and| ogi cal _or. reduce respectively:

>>> a = array([0,1,2,3,4])
>>> print greater(a,0)

[01111]

>>> alltrue(greater(a,0))
0

>>> sonmetrue(greater(a,0))
1

31

sounyn e

7. Pseudo Indices

This chapter discusses pseudo-indices, which allow arrays to have their shapes modified
by adding axes, sometimes only for the duration of the evaluation of a Python expression.

Consider multiplication of arank-1 array by ascalar:

>>> a = array([1,2,3])

>>> g * 2

[2 4 6]
This should be trivial to you by now. We've just multiplied arank-1 array by a scalar (which isconverted to a
rank-0 array). In other words, the rank-0 array was broadcast to the next rank. This works for adding some two
rank-1 arrays aswell:

>>> print a

[12 3]

>>> a + array([4])

[56 7]
but it won't work if either of thetwo rank-1 arrays have non-matching dimensions which aren't 1 — put another
way, broadcast only works for dimensions which are either missing (e.g. alower-rank array) or for dimensions
of 1.

With this in mind, consider a classic task, matrix multiplication. Suppose we want to multiply the row vector
[10,20] by the column vector [1,2,3].

>>> a = array([10, 20])

>>> b = array([1,2,3])

>>> a * b

Traceback (innernost |ast):
File "<stdin>", line 1, in ?

Val ueError: frames are not aligned exanple
This makes sense — we're trying to multiply arank-1 array of shape (2,) with arank-1 array of shape (3,). This
violates the laws of broadcast. What we really want to do is make the second vector a vector of shape (3,1), so
that the first vector can be broadcast accross the second axis of the second vector. One way to do thisisto use
the reshape function:

>>> a.shape
(2,)
>>> b. shape
(3.)
>>> p2 = reshape(b, (3,1))
>>> print b2
[[1]
[2]
[3]]
>>> bh2. shape
(3, 1)
>>> print a * b2
[[10 20]
[20 40]
[30 60]]

32

Thisis such acommon operation that aspecial feature was added (it turns out to be useful in many other places
aswell) —the NewAxi s ““pseudo-index”, originally developed in the Y orick language. NewAxi s isan index,
just like integers, so it is used inside of the slice brackets []. It can be thought of as meaning ““add a new axis
here," in much the same ways as adding a 1 to an array's shape adds an axis. Again, examples help clarify the
situation:

>>> print b

[1 2 3]
>>> b. shape
(3.)

>>> ¢ = b[:, NewAxis]
>>> print ¢
[[1]
[2]
[3]]
>>> c. shape
(3,1)
Why use such a pseudo-index over the reshape function or shape assignments? Often one doesn't really want a
new array with anew axis, one just wantsit for an intermediate computation. Witness the array multiplication
mentioned above, without and with pseudo-indices:

>>> without = a * reshape(b, (3,1))

>>> with = a * b[:, NewAxi s]
The second is much more readable (once you understand how NewAxi s works), and it's much closer to the in-
tended meaning. Also, it'sindependent of the dimensions of the array b Y ou might counter that using something
liker eshape(b, (-1,1)) isasodimension-independent, but 1) would you argue that it's as readable? 2)
how would you deal with rank-3 or rank-N arrays? The NewAxi s-based idiom also works nicely with higher

rank arrays, and withthe. . . “rubber index" mentioned earlier. Adding an axis before the last axisin an array
can be done ssmply with:
>>> a[..., NewAxis, :]

33

S30IpU| OpNasd o

8. Array Functions

Most of the useful manipulations on arrays are done with functions. This might be surprising given Python's ob-
ject-oriented framework, and that many of these functions could have been implemented using methods in-
stead. Choosing functions meansthat the same procedures can be applied to arbitrary python sequences, not just
to arrays. For example, while transpose([[1,2],[3,4]]) works just fine,
[[1,2],[3,4]].transpose() can't work. This approach also allows uniformity in interface between
functions defined in the Numeric Python system, whether implemented in C or in Python, and functions defined
in extension modules. The use of array methods is limited to functionality which depends critically on the im-
plementation details of array objects. Array methods are discussed in the next chapter.

We've already covered two functions which operate on arrays, r eshape andr esi ze.
take(a, indices, axis=0)

t ake isin someways like the slice operations. It selectsthe elements of the array it gets asfirst argument based
on theindices it gets as a second argument. Unlike slicing, however, the array returned by t ake hasthe same
rank as theinput array. Thisisagain much easier to understand with an illustration:

>>> print a

[[O 1 2 3 4]
[5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]]

>>> print take(a, (0,)) # first row

[[01 2 3 4]]

>>> print take(a, (0,1)) # first and second row
[[01 2 3 4]

[56 7 8 9]]

>>> print take(a, (0,-1)) # first and |l ast row

[[O 1 2 3 4]
[15 16 17 18 19]]
The optional third argument specifies the axis along which the selection occurs, and the default value (asin the
examples above) is 0, the first axis. If you want another axis, then you can specify it:

>>> print take(a, (0,), 1) # first colum

([O]

[5]

[10]

[15]]

>>> print take(a, (0,1), 1) # first and second col um
([0 1]

[5 6]

[10 11]

[15 16]]

>>> print take(a, (0,-1), 1) # first and |last colum
[[0 4]

[5 9]

[10 14]

[15 19]]

Thisis considered to be a *“structural" operation, because its result does not depend on the content of thearrays
or the result of a computation on those contents but uniquely on the structure of the array. Likeall such struc-
tura operations, the default axisis 0 (thefirst rank). | mention it here because later in thistutorial, we will see
functions which have adefault axis of -1.

Take is often used to create multidimensional arrayswith the indices from arank-1 array. Asinthe earlier ex-
amples, the shape of the array returned by t ake() isacombination of the shape of its first argument and the
shape of the array that elements are “taken” from -- when that array is rank-1, the shape of the returned array
has the same shape as theindex sequence. This, aswith many other facets of Numeric, is best understood by ex-
periment.

>>> x = arange(10) * 100

>>> print X

[0 100 200 300 400 500 600 700 800 900]

>>> print take(x, [[2,4],[1,2]])

[[200 400]

[100 200]]

A typical exampleof usingt ake() isto replacethe grey valuesin an image according to a“trandlation table".
For example, let’ s consider abrightening of agreyscaleimage. The vi ew() function defined in the NumTut
package automatically scales the input arrays to use the entire range of grey values, except if the input arrays
areof typecode’ b’ unsigned bytes -- thus to test this brightening function, we'll first start by converting the
greyscale floating point array to agreyscale byte array:

>>> BW = (greeceBW 256).astype('b")
>>> vi ew(BW # shows bl ack and white picture
We then create a table mapping the integers 0-255 to integers 0-255 using a “ compressive nonlinearity":

>>> table = (255- arange(256)**2 / 256).astype('b")

>>> view(tabl e) # shows the conversion curve
To do the “taking” into an array of the right kind, we first create a blank image array with the same shape and
typecode as the original array:

>>> BW2 = zeros(BW shape, BWtypecode())
and then perform the take() operation

>>> BW2.flat[:] = take(table, BWflat)
>>> vi ew(BV2)

put (a, indices, values)

put isthe opposite of t ake. The values of the array a at the locations specified in i ndi ces are set to the
corresponding value of val ues. Thearray a must be a contiguous array. The argument indices can be any
integer sequence object with values suitable for indexing into the flat form of a. The argument val ues must
be any sequence of values that can be converted to the typecode of a.

>>> x = arange(6)

>>> put(x, [2,4], [20,40])

>>> print x

[0 120 340 5]
Notethat thetarget array a is not required to be one-dimensional. Sincea is contiguous and stored in row-major
order, thearray i ndi ces can betreated asindexing a’'s elements in storage order.

Theroutine put isthus equivaent to the following (although the loop isin C for speed):

ind = array(indices, copy=0)
v = array(val ues, copy=0).astype(a.typecode())
for i inlen(ind): a.flat[i] = v[i]

35

suonoung ey e

putmask (a, mask, values)

putmask sets those elements of a for which mask is true to the corresponding val ue in values. The array a
must be contiguous. The argument mask must be an integer sequence of the same size (but not necessarily the
same shape) as a. The argument val ues will be repeated as necessary; in particular it can be a scalar. The
array val ues must be convertible to the type of a.

>>> x=ar ange(5)

>>>put mask(x, [1,0,1,0,1], [10, 20, 30, 40, 50])

>>>print X

[10 130 350]

>>>put mask(x, [1,0,1,0,1], [-1,-2])

>>> print x

[-1 1 -1 3 -1]

Note how in the last example, the third argument was treated asif it was[-1, -2, -1, -2, -1].

transpose(a, axes=None)

t ranspose takesan array and returns a new array which corresponds to awith the order of axes specified by
the second argument. The default corresponds to flipping the order of all the axes (it is equivalent to
a. shape[:: - 1] if aistheinput array).

>>> print a

[[O 1 2 3 4]

[5 6 7 8 9]

[10 11 12 13 14]

[15 16 17 18 19]]

>>> print transpose(a)

[[O 5 10 15]

[6 11 16]

[7 12 17]

[8 13 18]

[9 14 19]]

>>> greece. shape # it’'s a 355x242 RGB picture
(355, 242, 3)

>>> vi ew(greece)

picture of greek street is shown

>>> vi ew(transpose(greece, (1,0,2)))# swap x and y, not col or axis!
picture of greek street is shown sideways

A WN PP

repeat(a, repeats, axis=0)

r epeat takesan array and returns an array with each element in the input array repeated as often asindicated
by the corresponding elements in the second array. It operates along the specified axis. So, to stretch an array
evenly, one needs the repeats array to contain as many instances of the integer scaling factor as the size of the
specified axis:

>>> vi ew(repeat (greece, 2*ones(greece.shape[0]))) # double in X

>>> vi ew(repeat (greece, 2*ones(greece.shape[1l]), 1)) # double inY

choose(a, (b0, ..., bn))

aisan array of integers between 0 and n. The resulting array will have the same shape as a, with element select-
ed from bO0,...,bn asindicating by the value of the corresponding element in a.

Assume aisan array a that you want to ““clip" so that no values are greater than 100.0.
>>> choose(greater(a, 100.0), (a, 100.0))

36

Everywhere that greater(a, 100.0) is false (ie. 0) thiswill ““choose" the corresponding value in a. Everywhere
elseit will ““choose" 100.0.

Thisworks as well with arrays. Try to figure out what the following does:
>>> ret = choose(greater_than(a,b), (c,d))

ravel(a)

returns the argument array a asa 1d array. It isequivalent to r eshape(a, (-1,)) ora.fl at.Unlike
a. fl at, however,r avel workswith non-contiguous arrays.

>>> print X
[l 0O 1 2 3]
[5 6 7 8]
[10 11 12 13]]
>>> x.iscontiguous()
0
>>> x, fl at
Traceback (innernost |ast):
File "<stdin>", line 1, in ?
Val ueError: flattened indexing only available for contiguous array
>>> ravel (x)
array([o, 1, 2, 3, 5 6, 7, 8, 10, 11, 12, 13])

nonzero(a)

nonzero() returns an array containing the indices of the elementsin athat are nonzero. These indices only make
sense for 1d arrays, so the function refuses to act on anything else. As of 1.0a5 this function does not work for
complex arrays.

where(condition, X, y)

where(condition,x,y) returns an array shaped like condition and has elements of x and y where condition isre-
spectively true or false

compress(condition, a, axis=0)

returns those elements of a corresponding to those elements of condition that are nonzero. condition must be the
same size asthe given axis of a.

>>> print X

[01 2 3]

>>> print greater(x, 2)

[0 00 1]

>>> print conpress(greater(x, 2), Xx)

[3]
diagonal(a, k=0)

returns the entries along the k th diagonal of a (k is an offset from the main diagonal). Thisis designed for 2d
arrays. For larger arrays, it will return the diagonal of each 2d sub-array.

>>> print X

[[O 1 2 3 4]
[5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]
[20 21 22 23 24]]

37

suonoung ey e

>>> print diagonal (x)

[0O 6 12 18 24]

>>> print diagonal (x, 1)
[1 7 13 19]

>>> print diagonal (x, -1)
[511 17 23]

trace(a, k=0)

returns the sum of the elementsin aalong the k th diagonal.

>>> print X

[[O 1 2 3 4]
[5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]
[20 21 22 23 24]]

>>> print trace(x) #0 + 6 + 12 + 18 + 24
60

>>> print trace(x, -1) # 5 + 11 + 17 + 23

56

>>> print trace(x, 1) #1+ 7 + 13 + 19

40

searchsorted(a, values)

Called with arank-1 array sorted in ascending order, sear chsor t ed() will return the indices of the posi-
tions in awhere the corresponding values would fit.

>>> print bin_boundaries
[o. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.]
>>> print data
[0.3029573 0.79585496 0.82714031 0.77993884 0.55069605 0.76043182
0.28511823 0.29987358 0.40286206 0.68617903]
>>> print searchsorted(bin_boundaries, data)
[4898683357]
This can be used for example to write a simple histogramming function:

>>> def histogram(a, bins):
n = searchsorted(sort(a), bins)
n = concatenate([n, [len(a)]])
return n[1:]-n[:-1]

>>> print histogram([0,0,0,0,0,0,0,.33,.33,.33], arange(0,1.0,.1))
[700300000 0]

>>> print histogran(sin(arange(0,10,.2)), arange(-1.2, 1.2, .1))
[004222021213131323234900]

sort(a, axis=-1)

This function returns an array containing a copy of the datain a, with the same shape as a, but with the order
of the elements along the specified axis sorted. The shape of the returned array is the same as a’s. Thus,
sort (a, 3) will beanarray of the same shape as a, where the elements of a have been sorted along the fourth
axis.

>>> print data
[[5019 8]
[2 58 3 2]

38

[8 03 7 0]

[9 6 95 0]
[909 7 7]]

>>> print sort(data) # Axis -1 by default
[[0 158 9]

[2 2 35 8]

[00 37 8]
[056 9 9]
[07 7 9 9]]

>>> print sort(data, 0)
[[2 013 0]

[50 35 0]

[8 08 7 2]
[95977]

[9 6 99 8]]

argsort(a, axis=-1)

ar gsort will return the indices of the elements of aneeded to producesor t (a) . In other words, for arank-
larray,take(a, argsort(a)) == sort(a).

>>> print data

[5019 8]

>>> print sort(data)

[0158 9]

>>> print argsort(data)

[1 20 4 3]

>>> print take(data, argsort(data))
[0158 9]

argmax(a, axis=-1), argmin(a, axis=-1)

Thear gmax () function returns an array with the arguments of the maximum values of itsinput array aalong
the given axis. The returned array will have one lessdimension thana. ar gnmi n() isjust likear gmax() , ex-
cept that it returns the indices of the minimaalong the given axis.

>>> print data
[[96 130]
[0 08 9 1]
[7 454 0]
[5 27 7 1]

[997 9 7]]

>>> print argmex(data)
[03020]

>>> print argmex(data, 0)
[0 411 4]

>>> print argm n(data)
[4 04 4 2]

>>> print argmn(data, 0)
[11000]

~N N o010

fromstring(string, typecode)

Will return the array formed by the binary data given in string of the specified typecode. Thisis mainly used for
reading binary datato and from files, it can aso be used to exchange binary data with other modules that use
python strings as storage (e.g. PIL). Note that this representation is dependent on the byte order. To find out the
byte ordering used, use the byt eswapped() method described on page45.

39

suonoung ey e

dot(ml, m2)

Thedot () function returns the dot product of nil and n2. Thisis equivalent to matrix multiply for rank-2 ar-
rays (without the transpose). Somebody who does more linear algebra really needs to do this function right
some day!

matrixmultiply(m1, m2)

Thematrixmul tiply(nml, nR) multiplies matrices or matrices and vectors as matrices rather than ele-
mentwise. Compare:

>>> print a

[[0 1 2]

[3 4 5]]

>>> print b

[12 3]

>>> print a*b

[[O 2 6]

[3 8 15]]

>>> print matrixmultiply(a,b)
[8 26]

clip(m, m_min, m_max)

The clip function creates an array with the same shape and typecode as m, but where every entry in m that is
less than m_min is replaced by m_min, and every entry greater than m_max is replaced by m_max. Entries
within the range [m_min, m_max] are left unchanged.

>>> a = arange(9, Float)
>>> clip(a, 1.5, 7.5)
1.5000 1.5000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 7.5000

indices(shape, typecode=None)

Theindices function returns an array corresponding to the shape given. The array returned is an array of anew
shape which is based on the specified shape, but has an added dimension of Iength the number of dimensions

in the specified shape. For example, if the shape specified by the shape argument is (3,4), then the shape of

the array returned will be (2,3,4) sincethe length of (3,4) is 2. The contents of the returned arrays are such that
theith subarray (along index O, the first dimension) containstheindicesfor that axis of the elementsinthe array.

An example makes things clearer:

>>> | = indices((4,3))

>>> | .shape

(2, 4, 3)

>>> print i[0]

[[0 0 0]

[11 1]

[2 2 2]

[3 3 3]]

>>> print i[1]

[[012]

[0 1 2]

[0 1 2]

[0 1 2]]
So, i [0] hasan array of the specified shape, and each element in that array specifies the index of that position
in the subarray for axis 0. Similarly, each element in the subarray ini [1] containsthe index of that position
in the subarray for axis 1.

swapaxes(a, axisl, axis2)

Returns a new array which shares the data of a, but which has the two axes specified by axi s1 and axi s2
swapped. If a isof rank O or 1, swapaxes simply returns a new referenceto a.

>>> x = arange(10)
>>> x.shape = (5, 2,1)
>>> print X
[[[0]

[1]]

[[2]

[3]]

[[4]

[5]]

[[6]

[7]]

[[8]

[9]]1]
>>> y = swapaxes(x, 0, 2)
>>> print y.shape
(1, 2, 5)
>>> print y
[[[0O 2 4 6 8]

[1 357 9]]]

concatenate((a0, al, ..., an), axis=0)

Returns a new array containing copies of the data contained in all arraysa0 ... an. Thearraysai will be
concatenated along the specified axis (0 by default). All arrays ai must have the same shape along every axis
except for the one given. To concatenate arrays along anewly created axis, you can usear r ay((a0,

an)) aslong asall arrays have the same shape.

>>> print X
[[0O 1 2 3]
[5 6 7 8]
[10 11 12 13]]
>>> print concatenate((Xx, X))
[[O 1 2 3]
[5 6 7 8]
[10 11 12 13]
[0 1 2 3]
[5 6 7 8]
[10 11 12 13]]
>>> print concatenate((x,x), 1)
[T O 1 2 3 0 1 2 3]
[5 6 7 8 5 6 7 8]
[10 11 12 13 10 11 12 13]]
>>> print array((x, X))
((f o 1 2 3]
[5 6 7 8]
[10 11 12 13]]
[l 0 1 2 3]
[5 6 7 8]
[10 11 12 13]]]

41

suonoung ey e

innerproduct(a, b)

innerproduct produces the inner product of arraysaand b. It is equivalent to matrixmultiply(a, transpose(b)).

outerproduct(a,b)

outerproduct(a,b) produces the outer product of vectorsaand b, that isresult[i, j] = g[i] * b[j]

array_repr()

See section on Textual Representations of arrays.

array_str()

See section on Textual Representations of arrays.

resize(a, new_shape)

Ther esi ze function takes an array and a shape, and returns anew array with the specified shape, and filled
with the datain theinput array. Unlike the r eshape function, the new shape does not haveto yield the same
size as the original array. If the new size of isless than that of the input array, the returned array contains the
appropriate data from the “beginning” of the old array. If the new sizeis greater than that of the input array, the
datain theinput array is repeated as many times as needed to fill the new array.

>>> x = arange(10)

>>> y = resize(x, (4,2)) # note that 4*2 < 10
>>> print X

[01 234567 8 9]

>>> print y

([0 1]

[2 3]

[4 5]

[6 7]]

>>> print resize(array((0,1)), (5,5))# note that 5*5 > 2
[[01010]

[1 010 1]

[01010]

[1 010 1]

[01010]]

= ORFr O

diagonal(a, offset=0, axis1=-2, axis2=-1)

The diagonal function takes an array a, and returns an array of rank 1 containing all of the elements of a such
that the difference between their indices along the specified axesis equal to the specified offset. With the default
values, this correspondsto all of the elements of the diagonal of aaong the last two axes. Currently thisisbro-
ken for offsets other than -1, 0 and 1, and for non-square arrays.

repeat (a, counts, axis=0)

The repeat function uses repeated copies of ato create aresult. The axis argument refers to the axis of x which
will be replicated. The counts argument tells how many copies of each element to make. The length of counts
must be the len(shape(a)[axig]).

In one dimension thisis straightforward:

>>> y
array([0, 1, 2, 3, 4, 5])
>>> repeat(y, (1,2,0,2,2,3))

42

array([0, 1, 1, 3, 3, 4, 4, 5, 5, 5])

In more than one dimension it sometimes gets harder to understand. Consider for example this array x whose
shapeis (2,3).

>>> X

array([[O0, 1, 2],
[3, 4, 3]]

>>> repeat(x, (2,6))

array([[O0, 1, 2],
[0, 1, 2],
[3, 4, 5],
[3, 4, 5],
[3, 4, 5],
[3, 4, 5],
[3, 4, 5],
[3, 4, 5]])

>>> repeat (x, (6,3), 1)
array([[O0, O, O, O, O, O, 1, 1, 1],
[2, 2, 2, 2, 2, 2, 3, 3, 3]])

convolve (a, v, mode=0)

The convolve function returns the linear convolution of two rank 1 arrays. The output isarank 1 array whose
length depends on the value of mode which is zero by default. Linear convolution can be used to find the re-
sponse of alinear system to an arbitrary input. If theinput arrays correspond to the coefficients of apolynomial
and mode=2, the output of linear convolution correspondsto the coefficients of the product of the polynomials.

The mode parameter requiresabit of explanation. Truelinear convolutionisonly defined over infinite sequenc-
es. As both input arrays must represent finite sequences, the convolve operation assumes that the infinite se-

guences represented by the finite inputs are zero outside of their domain of definition. In other words, the

sequences are zero-padded. If mode is 2, then the non-zero part of the full linear convolution is returned, so the
output has length len (a)+len (v)-1. Call this output f. If modeis 0, then any part of f which was affected by the
zero-padding is chopped from the result. In other words, let b be the input with smallest length and let ¢ be the
other input. The output when modeisOisthe middlelen (c)-len (b)+1 elementsof f. When modeis 1, the output
isthe samesize as ¢ and is equal to the middie len (c) elements of f.

cross_correlate (a, v, mode=0)

The cross_correlate function computes the cross_correlation between two rank 1 arrays. The output isarank 1
array representing the inner product of awith shifted versionsof v. Thisisvery similar to convolution. The dif-
ference isthat convolution reversesthe axis of one of theinput sequences but cross_correlation does not. In fact
itis easy to verify that convolve (a, v, mode) = cross_correlate (a, v [::-1], mode)

where (condition, X, y)

The where function creates an array whose values are those of x at those indices where condition is true, and
those of y otherwise. The shape of theresult is the shape of condition. The type of the result is determined by
the types of x and y. Either or both of x and y and be a scalar, which isthen used for any element of condition
which istrue.

identity(n)
Theidentity function returns an n by n array where the diagonal elements are 1, and the off-diagonal elements

areO.

43

suonoung ey e

>>> print identity(5)
[[1 000 0]
[01 00 0]
[0010 0]
[0 00 1O0]
[00O0O0 1]]

sum(a, index=0)

The sum function is a synonym for the reduce method of the add ufunc. It returns the sum of all of the elements
in the sequence given aong the specified axis (first axis by default).

>>> print X

[[0 1 2 3]
[4 5 6 7]
[8 9 10 11]
[12 13 14 15]
[16 17 18 19]]
>>> print sunm(x)

[40 45 50 55] # 0+4+8+12+16, 1+5+9+13+17,
2+6+10+14+18,

>>> print sum(x, 1)

[6 22 38 54 70] # 0+1+2+3, 4+5+6+7, 8+9+10+11,

cumsum(a, index=0)

The cunmsumfunction is a synonym for theaccunul at e method of theadd ufunc.
product(a, index=0)

The pr oduct function isasynonym for ther educe method of therul ti pl y ufunc.
cumproduct(a, index=0)

The cunpr oduct function isasynonym for theaccunul at e method of thenul t i pl y ufunc.
alltrue(a, index=0)

Theal | t r ue function isa synonym for ther educe method of thel ogi cal _and ufunc.
sometrue(a, index=0)

The somet r ue function isa synonym for ther educe method of thel ogi cal _or ufunc.

9. Array Methods

As we discussed at the beginning of the last chapter, there are very few array methods for good reasons, and
these all depend on the the implementation details. They're worth knowing, though:

itemsize()

The itemsize() method applied to an array returns the number of bytes used by any one of its elements.

>>> a = arange(10)
>>> a.itensize()

4

>>> a = array([1.0])

>>> a.itensize()

8

>>> a = array([1], Conplex)
>>> a.itensize()

16

iscontiguous()

Calling an array'siscontiguous() method returnstrueif the memory used by A is contiguous. A non-contiguous
array can be converted to a contiguous one by the copy() method. Thisis useful for interfacing to C routines
only, asfar as| know.

>>> XXX example

typecode()

The “typecode()' method returns the typecode of the array it is applied to. While we've been talking about them
as Float, Int, etc., they are represented internally as characters, so thisiswhat you'll get:

>>> a = array([1,2,3])

>>> a.typecode()

] I]

>>> a = array([1], Conplex)

>>> a.typecode()

‘D

byteswapped()

The byt eswapped method performs a byte swapping operation on all the elements in the array.

>>> print a

[1 2 3]

>>> print a.byteswapped()
[16777216 33554432 50331648]

tostring()

Thet ost ri ng method returns a string representation of the data portion of the array it is applied to.

>>> a = arange(65, 100)
>>> print a.tostring()
A B C D E F G H I J K L M N O P Q R S T

45

SPOUB N Aelly

u Vv W X Y zZ [\ 1 ~» *a b ¢

tolist()

Calling an array's talist() method returns a hierarchical python list version of the same array:

>>> print a

[[65 66 67 68 69 70 71]

[72 73 74 75 76 77 78]

[79 80 81 82 83 84 85]

[86 87 88 89 90 91 92]

[93 94 95 96 97 98 99]]
>>> print a.tolist()

[[65, 66, 67, 68, 69, 70, 71], [72, 73, 74, 75, 76, 77, 78], [79, 80,
81, 82, 83, 84, 85], [86, 87, 88, 89, 90, 91, 92], [93, 94, 95, 96, 97,
98, 99]]

10. Array Attributes

We've already seen a very useful attribute of arrays, the shape attribute. There are three more, flat, real and
imaginary.

flat

Accessing the f | at attribute of an array returns the flattened, or r avel () 'ed version of that array, without
having to do a function call. The returner array has the same number of elements as the input array, but is of
rank-1. One cannot set theflat attribute of an array, but one can use the indexing and slicing notations to modify
the contents of the array:

>>> print a

[[012]

[3 4 5]

[6 7 8]]

>>> print a.flat

[01 234567 8]

>>> a.flat = arange(9, 18)

Traceback (innernost |ast):
File "<stdin>", line 1, in ?

AttributeError: Attribute does not exist or cannot be set

>>> a.flat[4] = 100

>>> print a

(f o 1 2]

[3100 5]

[6 7 8]

>>> a.flat[:] = arange(9, 18)

>>> print a

[[9 10 11]

[12 13 14]

[15 16 17]]

real and imaginary

These attributesexist only for complex arrays. They return respectively arraysfilled with thereal and imaginary
parts of their elements. . i mag isasynonymfor. i magi nary. Thearraysreturned are not contiguous (except

for arrays of length 1, which areaways contiguous.). . real , . i mag and . i nagi nary are modifiable:
>>> print X
[O +1. 0.84147098+0. 54030231 0.90929743-0.41614684j]
>>> print x.real
[o. 0.84147098 0.90929743]
>>> print Xx.imag
[1. 0. 54030231 -0.41614684]

>>> x.inmag = arange(3)

>>> print X

[o. +0.j 0.84147098+1.j 0.90929743+2.j]

>>> x = reshape(arange(10), (2,5)) + 0j# make conpl ex array
>>> print X

[[0.40.j] 1.+0.j 2.40.j 3.40.j 4.+40.j]

47

SoINqLNY Aelly .

[5.40.j 6.+40.j 7.+0.j 8.40.j 9.+40.j]]
>>> print x.real

[[0. 1. 2. 3. 4.]

[5. 6. 7. 8. 9.]]

>>> print x.typecode(), X.real.typecode()
Dd

>>> print x.itensize(), Xx.imag.itensize()
16 8

11. Special Topics

This chapter holds miscellaneous information which did not neatly fit in any of the other
chapters.

Subclassing

Subclassing Numeric arraysis not possible due to a limitation of Python. The approach taken in the Masked
Array facility (“Masked Arrays’ on page 89) is one answer. UserArray.py, described below, can be subclassed,
but this is often unsatisfactory unless you put in asimilar effort to that in MA.

Code Organization

Numeric.py and friends

Numer i c. py isthe most commonly used interface to the Numeric extensions. It is a Python module which
importsall of the exported functions and attributesfrom themrul t i ar r ay module, and then defines some util-
ity functions. As some of the functions defined in Numer i ¢. py could someday be moved into a supporting
C module, the utility functions and the mul t i ar r ay object are documented together, in this section. The
nmul ti array objects are the core of Numeric Python — they are extension types written in C which are de-
signed to provide both space- and time-efficiency when manipulating large arrays of homogeneous data types,
with special emphasisto numeric data types.

UserArray.py

In the tradition of User Li st. py and User Di ct . py, the User Ar r ay. py module defines a class whose
instances act in many ways likearray objects.

Matrix.py

The Mat ri x. py python module defines a class Mat r i x which isa subclass of User Ar r ay. The only dif-
ferences between Mat r i x instancesand User Ar r ay instancesisthat the* operator on Mat r i x performsa
matrix multiplication, as opposed to element-wise multiplication, and that the power operator * * is disallowed
for Mat ri x instances.

Precision.py

The Precision.py module contains the code which is used to determine the mapping between typecode names
and values, by building small arrays and looking at the number of bytes they use per element.
ArrayPrinter.py

The ArrayPrinter.py module defines the functions used for default printing of arrays. See the section on Textua
Representations of arrays on page55,

Mlab.py

The Mlab.py module provides some functions which are compatible with the functions of the same nameinthe
MATLAB programming language. These are:

bartlett(M)
returns the M-point Bartlett window.

49

soido] e1oads .

blackman (M)

returns the M-point Blackman window.

corrcoef(x, y=None)

The correlation coefficient

cov(m,y=None)

returns the covariance

cumprod(m)

returns the cumulative product of the elments aong thefirst dimension of m.
cumsum(m)

returns the cumulative sum of the elementsalong the first dimension of m.

diag(v, k=0)

returns the k-th diagonal if v is amatrix or returns amatrix with v as the k-th diagonal if v is avector.
diff(x, n=1)

calculates the first-order, discrete difference approximation to the derivative.

eig(m)

returns the the eigenvalues of m in x and the corresponding eigenvectorsin the rows of v.
eye(N, M=N, k=0, typecode=None)

returns aN-by-M matrix where the k-th diagonal is al ones, and everything else is zeros.
fliplr(m)

returnsa2-D matrix m with the rows preserved and columns flipped in the left/right direction. Only workswith
2-D arrays.

flipud(m)

returns a 2-D matrix with the columns preserved and rows flipped in the up/down direction. Only works with
2-D arrays.

hamming (M)

returns the M-point Hamming window.
hanning(M)

returns the M-point Hanning window.

kaiser(M, beta)

returns a Kaiser window of length M with shape parameter beta. It depends on the cephes module for the mod-
ified bessel function iO.

max(m)
returns the maximum along the first dimension of m.

mean(m)

returns the mean along the first dimension of m. Note: if mis aninteger array, integer division will occur.
median(m)

returns amean of malong thefirst dimension of m.

50

min(m)

returns the minimum along the first dimension of m.

msort(m)

returns a sort along the first dimension of masin MATLAB.
prod(m)

returns the product of the elements along the first dimension of m.
ptp(m)

returns the maximum - minimum along the first dimension of m.
rand(dl, ..., dn)

returns amatrix of the given dimensions which is initialized to random numbers from a uniform distribution in
therange [0,1).

rotoo(m,k=1)

returns the matrix found by rotating m by k* 90 degrees in the counterclockwise direction.
sinc(x)

returns sin(pi*x)/(pi*x) at al points of array x.

squeeze(a)

removes any ones from the shape of a

std(m)

returns the standard deviation along the first dimension of m. The result is unbiased meaning division by
len(m)-1.

sum(m)

returns the sum of the elements aong thefirst dimension of m.

svd(m)

return the singular value decomposition of m [u,x,v]

trapz(y,x=None)

integratesy = f(x) using the trapezoidal rule.

tri(N, M=N, k=0, typecode=None)

returns a N-by-M matrix where all the diagonals starting from lower left corner up to the k-th are all ones.
tril(m,k=0)

returns the elements on and below the k-th diagonal of m. k=0 is the main diagonal, k > O isabove and k <0 is
below the main diagonal.

triu(m,k=0)

returns the elements on and above the k-th diagonal of m. k=0 is the main diagonal, k > Oisabove and k <0is
below the main diagonal.

51

soido] e1oads .

The multiarray object

The array objects which Numeric Python manipulates is actually a multiarray object, given thisnameto distin-
guish it from the one-dimensional array object defined in the standard array module. From here on, however,
theterms array and multiarray will be used interchangeably to refer to the new object type. multiarray objects
are homogeneous multidimensional sequences. Starting from the back, they are sequences. This means that
they are container (compound) objects, which contain references to other objects. They are multidimensiona,
meaning that unlike standard Python sequences which define only a single dimension along which one can it-

erate through the contents, multiarray objects can have up to 40 dimensions. ! Final ly, they are homogeneous.
This means that every object in a multiarray must be of the same type. Thisis done for efficiency reasons --
storing the type of the contained objects once in the array means that the process of finding the type-specific
operation to operate on each element in the array needsto be done only once per array, as opposed to once per
element. Furthemore, as the main purpose of these arraysis to process numbers, the numbers can be stored di-
rectly, and not as full-fledged Python objects (PyObject *), thus yielding memory savings. It ishowever pos-
sible to make arrays of Python objects, which relinquish both the space and time efficiencies but alow
heterogeneous contents (aswe shall see, these arrays are still homogeneous from the Numeric perspective, they
arejust arrays of Python object references).

Typecodes

The kind of number stored in an array is described by its typecode. This code is stored internally as a single-
character Python string, but more descriptive names corresponding to the typecodes are made availableto the
Python programmer in the Precision.py module. The typecodes are defined as follows:

Table3: Typecode Listing

Variable defined in Typecode Description
Typecode module character P

Char "¢’ Single-character strings

Py bj ect 'O Reference to Python object

Unsi gnedl nt 8 b’ Unsigned integer using asingle byte.

I nt " Python standard integers (i.e. C long integers)

Fl oat T’ Python standard floating point numbers
(i.e. C double-precision floats)

na Tf Single-precision floating point numbers

Conpl ex 'D Complex numbers consisting of two double-preci-
sion floats

na "F Complex numbers consisting of two single-precision
floats

IntO, Int8, Intl6, n/a These correspond to machine-dependent typecodes:

Int32, Int64, Intl28 I nt O returns the typecode corresponding to the
smallest availableinteger, | nt 8 that corresponding
to the smallest available integer with at least 8 hits,
I nt 16 that with at least 16 bits, etc. If atypecodeis
not available (e.g. | nt 64 on a32-bit machine), the
variable is not defined.

1. Thislimit is modifiablein the source code if higher dimensionality is needed.

52

Table3: Typecode Listing

Variable defined in Typecode Description

Typecode module character P
Fl oat 0, Fl oat8, Fl oat 16, n/a Sameas| nt 0, | nt 8 etc. except for floating point
Fl oat 32, Fl oat 64, numbers.
Fl oat 128
Conpl ex0, Conpl ex8, n/a Sameas Fl oat 0, etc., except that the number of
Conpl ex16, Conpl ex32, bits refersto the precision of each of thetwo (rea
Conpl ex64, Conpl ex128 and imaginary) parts of the complex number.

Note on number fomat: the binary format used by Python isthat of the underlying C library. [notes about IEEE
formats, etc?|

Indexing in and out, slicing

Indexing arrays works likeindexing of other Python sequences, but supports some extensions which are as of

yet not implemented for other sequence typesl. The standard [start:stop] notation is supported, with start de-

faulting to O (the first index position) and stop defaulting to the length of the sequence, as for lists and tuples.

In addition, there is an optional stride argument, which specifies the stride size between successive indices in
the dlice. It is expressed by a integer following a second : immediately after the usual start:stop slice. Thus
[0: 11: 2] will slicethearray at indicesO, 2, 4, .. 10. The start and stop indices are optional, but the first : must
be specified for the stride interpretation to occur. Therefore, [: : 2] means slice from beginning to end, with a
stride of 2 (i.e. skip an index for each stride). If the start index is omitted and the stride is negative, the indexing
startsfrom the end of the sequence and workstowards the beginning of the sequence. If the stop index is omitted
and the stride is negative, the indexing stops at the beginning of the sequence.

>>> print X

[0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]

>>> print x[10]

10

>>> print x[:10]

[01 234567 89]

>>> print x[5:15: 3]

[5 8 11 14]

>>> print x[:10: 2]

[0 246 8]

>>> print x[10::-2]

[10 8 6 4 2 0]

>>> print x[::-1]

[19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0]
It is important to note that the out-of-bounds conditions follow the same rules as standard Python indexing, so
that slices out of bounds are trimmed to the sequence boundaries, but element indexing with out-of-bound in-
dicesyields an IndexError:

>>> print x[:100]

[0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
>>> print x[-200: 4]

[01 2 3]

>>> x[100]

1. The Python syntax can allow other Python datatypes to use both the stride notation and multidimen-
sional indexing, and itisrelatively simpleto write Python classeswhich support these operations. See
the Python Reference manual for details.

53

soido] e1oads .

Traceback (innernost |ast):
File "<stdin>", line 1, in ?

I ndexError: index out of bounds
The second difference between array indexing and other sequencesisthat arrays provide multidimensiona in-
dexing. An array of rank N can be indexed with up to N indices or slices (or combinations thereof. Indices
should be integers (with negative integers indicating offsets from the end of the dimension, as for other Python
sequences), and slices can have, as explained above, one or two :’s separating integer arguments. These indices
and slies must be separated by commas, and correspond to sequential dimensions starting from the leftmost
(first) index on. Thus a[3] meansindex 3 along dimension 0. a[3, : , - 4] meansthe dlice of aaong three
dimensions: index 3 along thefirst dimension, the entire range of indices along the second dimension, and the
4th from the end index along the third dimension. If the array being indexed has more dimensionsthan are spec-
ified in the multidimensional slice, those dimensions are assumed to be dliced from beginning to end. Thus, if
aisarank 3 array,

a[0] == a[0,:] == a[0,:,:]
Ellipses

A specia slice element called Ellipses (and written . . .) is used to refer to a variable number of slices from
beginning to end along the current dimension. It is a shorthand for a set of such dices, specifically the number
of dimensions of the array being indexed minus those which are already specified. Only the first (leftmost) El-
lipsesin an multidimensional sliceis expanded, while the others are single dimensional slices from beginning
to end.

Thus, if a isarank-6 array,
a[3,:,:,:,-1,:] == a[3,..., -1,:] == a[3,..., -1,...1.

NewAXis

There isanother special symbol which can be used inside indexing operations to create new dimensions in the
returned array. The reference NewAxis, used as one of the comma-separated slice elements, does not change
the selection of the subset of the array being indexed, but changesthe shape of the array returned by theindexing
operation, so that an additional dimension (of length 1) is created, at the dimension position corresponding to
the location of NewAXxiswithin the indexing sequence. Thus, af : , 3, NewAxi s, - 3] will perform the index-
ing of acorresponding to theslice[a: , 3, - 3] , but will aso modify the shape of a so that the new shape of a
is(a. shape[0], a.shape[1l], 1, a.shape[2]).Thisoperationisespecially useful in conjunction
with the broadcasting feature described next, as it replaces a lengthy but common operation with a smple no-
tation (in the example above, the same effect can be had with

reshape(al:,3,-1], (a.shape[0], a.shape[l], 1, a.shape[2])).
Set-indexing and Broadcasting

The indexing rules described so far specify exactly the behavior of get-indexing. For set-indexing, the rules are
exactly the same, and describe the slice of the array on the left hand side of the assignment operator which is
the target of the assignment. The only point left to mention is the process of assigning from the source (on the
right hand side of the assignment) to thetarget (on the left hand side).

If both source and target have the same shape, then the assignment is done element by element. The typecode
of the target specifies the casting which can be applied in the case of atypecode mismatch between source and
target. If the typecode of the sourceis“lower” than that of the target, then an ' up-cast’ is performed and no loss
in precision results. If the typecode of the sourceis “higher” than that of the target, then a downcast is per-
formed, which may lose precision (as discussed in the description of the array call, these casts are truncating

casts, not rounding casts). Complex numbers cannot be cast to non-complex numbers.

If the source and the target have different shapes, Numeric Python attempts to broadcast the contents of the
source over the range of the target. This broadcasting occurs for all dimensions where the source has dimension
1lor0(i.e, isabsent). If there existsadimension for which the two arrays have differing lengths, and the length
of that dimension in the source is not 1, then the assignment fails and an exception (ValueError) is raised, noti-
fying the user that the arrays are not aligned.

AXxis specifications

In many of the functions defined in this document, indices are used to refer to axes. The numbering schemeis
the same asthat used by indexing in Python: the first (Ieftmost) axisisaxis0, the second axisisaxis 1, etc. Axis
-1 refersto the last axis, -2 refersto the next-to-last axis, etc.

Textual representations of arrays

The algorithm used to display arrays as text stringsis defined in the file ArrayPrinter.py, which definesa func-
tion array2string (imported into Numeric’s namespace) which offers considerable control over how arrays are
output. The range of options to the array2string function will be described first, followed by a description of
which options are used by default by str andr epr .

Note that the optional package MA, if imported, modifies this process so that very long arrays are not printed;
rather, asummary of their shape and type are shown. Y ou may wish toimport MA evenif you do not useit oth-
erwise, to get this effect, because without it accidentally attempting to print a very long array can take avery
long time to convert, giving the appearance that the program has hung.

array2string(a, max_|line_w dth = None, precision = None,

suppress_smal|l = None, separator=" ', array_output=0):
Thearray2st ri ng function takes an array and returns a textua representation of it. Each dimension isin-
dicated by a pair of matching square brackets ([]), within which each subset of the array is output. The orien-
tation of the dimensionsis as follows: the last (rightmost) dimension is always horizontal, so that the frequent
rank-1 arrays use a minimum of screen real-estate. The next-to-last dimension is displayed verticaly if present,
and any earlier dimension is displayed with additional bracket divisions. For example:

>>> a = arange(24)
>>> print array2string(a)
[01 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23]
>>> a.shape = (2, 10)
>>> print array2string(a)
[f O 12 2 3 4 5 6 7 8 9 10 11]
[12 13 14 15 16 17 18 19 20 21 22 23]]
>>> a.shape = (2,3, 4)
>>> print array2string(a)
((f o 1 2 3]
[4 5 6 7]
[8 9 10 11]]
[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]
Themax_| i ne_wi dt h argument specifies the maximum number of characters which the array2string rou-
tineusesin asingleline. If it is set to None, then the value of the sys. out put _| i ne_wi dt h attribute is
looked up. If it exists, it is used. If not, the default of 77 characters is used.

>>> print array2string(x)

[01 2 3 45 6 7 8 9101112 13 14 1516 17 18 19 20 21 22 23 24 25
26 27 28 29]

>>> sys.output_line width = 30

>>> print array2string(x)

[0 1 2 3 4 5 6 7 8 9

55

soido] e1oads .

10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25

26 27 28 29]
The pr eci si on argument specifies the number of digits after the decimal point which are used. If avalue of
None isused, thevalue of thesys. f | oat _out put _pr eci si onislooked up. If it exists, itisused. If not,
the default of 8 digitsis used.

>>> x = array((10.11111111111123123111, pi))

>>> print array2string(x)

[10.111111112 3.14159265]

>>> print array2string(x, precision=3)

[10.111 3.142]

>>> sys. float _output_precision = 2

>>> print array2string(x)

[10.11 3.14]
Thesuppress_snal | argument specifies whether small values should be suppressed (and output as 0). If a
value of None isused, the value of thesys. f| oat _out put _suppress_snal | islooked up. If it exists,
itisused (al that mattersiswhether it evaluatesto true or false). If not, the default of O (false) isused. Thisvari-
able also interacts with the precision parameters, asit can be used to suppress the use of exponential notation.

>>> print X

[1.00000000e-005 3.14159265e+000]

>>> print array2string(x)

[1.00000000e-005 3.14159265e+000]

>>> print array2string(x, suppress_small =1)

[0.00001 3.14159265]

>>> print array2string(x, precision=3)

[1.000e-005 3.142e+000]

>>> print array2string(x, precision=3, suppress_small=1)

[o. 3.142]
The separ at or argument is used to specify what character string should be placed between two numbers
which do not straddle a dimension. The default is a single space.

>>> print array2string(x)

[0 100 200 300 400 500 600 700 800 900 100]

>>> print array2string(x, separator ="', ')

[0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 100]
Finally, the last attribute, array _output, specifies whether to prepend the string "array(” and append either the
string™)" or ", ' X')" where X is atypecode for non-default typecodes (in other words, the typecode will only be
displayed if it is not that corresponding to Float, Complex or Int, which are the standard typecodes associated
with floating point numbers, complex numbers and integers respectively). The array() is so that an eval of the
returned string will return an array object (provided acomma separator is also used).

>>> array2string(arange(3))
[01 2]
>>> eval (array2string(arange(3), array_output=1))
Traceback (innernost |ast):

File "<stdin>", line 1, in ?

File "<string>", line 1

array([0 1 2])
AN

SyntaxError: invalid syntax

>>> type(eval (array2string(arange(3), array_output=1, separator=',")))
<type "array'>

>>> array2string(arange(3), array_output=1)

"array([0, 1, 2])'

>>> array2string(zeros((3,), '"i') + arange(3), array_output=1)

56

"array([O0, 1, 2],'i")"
Thestr andrepr operationson arrayscall array2stri ng withthemax_|i ne_w dt h, preci si on
and suppr ess_smal | all set to None, meaning that the defaults are used, but that modifying the attributes
in the sys module will affect array printing. str uses the default separator and does not use the array() text,
while repr uses acomma as a separator and does use the array(...) text.

>>> x = arange(3)

>>> print X

[0 1 2]

>>> str(x)

"[01 2]

>>> repr(x)

"array([0, 1, 2])' # note the array(...) and ,’s
>>> x = arange(0, .01, .001)

>>> print X

[o 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009]
>>> jnport sys

>>> sys.float_output_precision = 2

>>> print X

[o 0. 0. 0. 0. 0.01 0.01 0.01 0.01 0.01]

Comparisons

Comparisons of multiarray objects results using the norma comparison operators (such as == or >) result in
exceptions. Python requiresthat the result of acomparison be asca ar, not the vector wewould want as the result
of elementwise comparison.

Therefore, for comparisons you must use the routines for comparison describein “Logical Ufuncs’ on page 30.
Pickling and Unpickling -- storing arrays on disk
This documentation has not yet been written, but pickling of Numeric arraysis possible.

Dealing with floating point exceptions

Attempts to use NaN’s as missing val ues have proven frustrating and not very portable. Consider “Masked Ar-
rays” on page 89 instead.

fpectl should be documented here ...

57

soido] e1oads .

12. Writing a C extension to NumPy

Introduction

There are two applications that require using the NumPy array type in C extension modules:

e Access to numerical libraries: Extension modules can be used to make numerical libraries written in C (or
languages linkable to C, such as Fortran) accessible to Python programs. The NumPy array type has the ad-
vantage of using the same data layout as arraysin C and Fortran.

» Mixed-language numerical code: In most numerical applications, only asmall part of the total codeis CPU
time intensive. Only this part should thus be written in C, the rest can be written in Python. NumPy arrays
areimportant for the interface between these two parts, because they provide equally simple access to their
contents from Python and from C.

This document is atutorial for using NumPy arraysin C extensions.

Preparing an extension module for NumPy arrays

To make NumPy arrays available to an extension module, it must include the header file ar r ayobj ect . h,
after the header file Python.h that is obligatory for al extension modules. Thefile ar r ayobj ect . h comes
with the NumPy distribution; depending on where it wasinstalled on your system you might have to tell your
compiler how to find it. By default Distutils installed in a subdirectory Numeric in your Python include path,
and so you should include it this way:

#i ncl ude “Numeric/arrayobject.h”

Important Tip

Isyour C extension using Numeric blowing up? Maybe you didn’t call import_array().

In addition to including ar r ayobj ect . h, the extension must call i nport _array() initsinitialization
function, after the call to Py_| ni t Modul e() . Thiscall makes sure that the modul e which implementsthe ar-
ray type has been imported, and initializes a pointer array through which the NumPy functions are called. If you
forget this call, your extension module will crash on thefirst call to a NumPy function! If you will be manipu-
lating ufunc objects, you should aso include the file uf uncobj ect . h, also available as part of the NumPy
distribution inthe | ncl ude directory and usually installed in subdirectory Numeric.

All of the rulesrelated to writing extension modules for Python apply. The reader unfamiliar with these rules
is encouraged to read the standard text on the topic, “ Extending and Embedding the Python Interpreter,” avail-
able as part of the standard Python documentation distribution.

Accessing NumPy arrays from C

Types and Internal Structure

NumPy arrays are defined by the structure Py Ar r ay Cbj ect , which is an extension of the structure Py Ob-

j ect . Pointersto Py Ar r ayObj ect can thus safely be cast to PyObj ect pointers, whereas the inverseis
safe only if the object is known to be an array. The type structure corresponding to array objectsis
PyArray_Type. Thestructure Py Ar r ayObj ect hasfour elementsthat are needed in order to accessthe ar-
ray's datafrom C code:

58

int nd
The number of dimensionsin the array.
i nt *di nensions

A pointer to an array of nd integers, describing the number of elements along each dimension. The
sizes arein the conventional order, so that for any array a,
a. shape==(di nensi ons[0], dinensions[1l], ..., dinmensions[nd]).

int *strides

A pointer to an array of nd integers, describing the address offset between two successive data ele-
ments along each dimension. Notethat strides can also be negative! Each number gives the number
of bytes to add to a pointer to get to the next element in that dimension. For example, ifmypt r cur-
rently pointsto element of arank-5array at indices 1, 0, 5, 3, 2 and you want it to point to element
1, 0,5, 4, 2 thenyou should add st r i des[3] tothepointer: nyptr += strides[3].This
works even if (and is especially useful when) the array isnot contiguous in memory.

char *data

A pointer to the first data element of the array.

The address of a data element can be calculated from itsindices and the data and strides pointers. For example,
element[i, j] of atwo-dimensional array hastheaddressdat a + i *array->strides[0] + j*ar-
ray->stri des[1] . Notethat the stride offsetsarein bytes, not in storage units of the array elements. There-
fore address cal culations must be made in bytes as well, starting from the data pointer, which is always a char
pointer. To access the element, the result of the address calculation must be cast to a pointer of the required
type. The advantage of this arrangement isthat purely structural array operations (indexing, extraction of sub-
arrays, etc.) do not have to know the type of the array elements.

Element data types

Thetype of the array elementsisindicated by atype number, whose possible va ues are defined as constantsin
arrayobj ect. h, asgivenin Table 3.

Table4: C constants corresponding to storage types

Constant element data type
PyArray_CHAR char
PyArray_UBYTE unsi gned char
PyArray_SBYTE signed char
PyArray_SHORT short
PyArray_I NT i nt
PyArray_LONG | ong
PyArray_FLOAT fl oat
PyArray_DOUBLE doubl e
PyArray_ CFLOAT float][2]

PyAr ray_CDOUBLE doubl e[2]
PyArray_OBJECT PyObj ect *

59

AJwinN 01 uosualxe D e BUNLIAN

The type number is stored in ar r ay- >descr - >t ype_num Note that the names of the element type con-
stants refer to the C data types, not the Python datatypes. A Python i nt isequivaenttoaC | ong, and a Py-
thon f | oat correspondsto a C doubl e. Many of the element types listed above do not have corresponding
Python scalar types (e.g. PyArray_| NT).

Contiguous arrays

An important special case of a NumPy array isthe contiguous array. Thisisan array whose elements occupy a
single contiguous block of memory and have the same order as a standard C array. In a contiguous array, the
valueof array->stri des[i] isequa to the size of asingle array element times the product of ar r ay-
>di mensions[j] forj uptoi - 1. Arraysthat are created from scratch are always contiguous; non-contig-
uous arrays are the result of indexing and other structural array operations. The main advantage of contiguous
arraysiseasier handling in C; the pointer ar r ay- >dat a is cast to the required type and then used likea C ar-
ray, without any reference to the stride values. Thisis particularly important when interfacing to existing librar-
iesin C or Fortran, which typically require this standard data layout. A function that requires input arraysto be
contiguous must call the conversion function PyArray_Cont i guousFr ombj ect (), described in the
section “Accepting input datafrom any sequence type".

Zero-dimensional arrays

NumPy permits the creation and use of zero-dimensional arrays, which can be useful to treat scalarsand higher-
dimensional arrays in the same way. However, library routines for general use should not return zero-demen-
sional arrays, because most Python codeis not prepared to handle them. Moreover, zero-dimensional arrays can
create confusion because they behave like ordinary Python scalarsin many circumstances but are of a different
type. A comparison between a Python scalar and azero-dimensional array will always fail, for example, even
if the values are the same. NumPy provides aconversion function from zero-dimensional arrays to Python sca-
lars, which is described in the section “Returning arrays from C functions'.

A simple example

The following function cal cul ates the sum of the diagonal elements of a two-dimensional array, verifying that
the array isin fact two-dimensional and of type Py Ar r ay _ DOUBLE.

static PyCbject *
trace(PyQhject *self, PyQbject *args)
{

PyArrayCbj ect *array;
doubl e sum
int i, n;

if (!PyArg_ParseTuple(args, "O",
&PyArray_Type, &array))
return NULL,
if (array->nd !'= 2 || array->descr->type_num!= PyArray_DOUBLE) ({
PyErr_Set String(PyExc_Val ueError,
"array nust be two-di mensional and of type float");
return NULL,

}

n = array->di mensi ons[0] ;
if (n > array->di mensions[1])
n = array->di mensi ons[1];
sum = 0.
for (i =0; i < n; i++)
sum += *(double *)(array->data + i*array->strides[0] + i*array-
>strides[1]);

60

return PyFl oat_FronDoubl e(sun;
}

Accepting input data from any sequence type

The example in the last section requires its input to be an array of type double. In many circumstances thisis
sufficient, but often, especialy in the case of library routines for general use, it would be preferable to accept
input datafrom any sequence (lists, tuples, etc.) and to convert the element type to doubl e automatically where
possible. NumPy providesa function that accepts arbitrary sequence objects as input and returns an equivalent
array of specified type (thisisin fact exactly what the array constructor Nurrer i c. ar r ay() doesin Python
code):

PyObj ect *
PyArray_Conti guousFr onbj ect (PyObj ect *obj ect,

int type_num

i nt m n_di nensions,

i nt max_di nensi ons);
The first argument, object, is the sequence object from which the data is taken. The second argument,
type_num, specifies the array element type (see the table in the section “Element data types”. If you want the
function to the select the ““smallest" type that is sufficient to store the data, you can pass the special value
Py Ar r ay_NOTYPE. The remaining two arguments let you specify the number of dimensions of the resulting
array, which is guaranteed to beno smaller thanni n_di mensi ons and no larger than max_di mensi ons,
except for the case max_di mensi ons == 0, which means that no upper limit isimposed.

If the input data is not compatible with the type or dimension restrictions, an exceptionisraised. Sincethe array
returned by Py Ar r ay_Cont i guousFr omObj ect () isguaranteed to be contiguous, thisfunction aso pro-
vides a method of converting a non-contiguous array to a contiguous one. If the input object is already a con-

tiguous array of the specified type, it is passed on directly; there is thus no performance or memory penalty for
caling the conversion function when it is not required. Using this function, the example from the last section

becomes

static PyObject *
trace(PyCbject *self, PyObject *args)
{

PyObj ect *input;

PyArrayCbj ect *array;

doubl e sum

int i, n;

if (!PyArg_ParseTuple(args, "O', & nput))
return NULL;
array = (PyArrayQbj ect *)
PyArray_Conti guousFrontbj ect (i nput, PyArray DOUBLE, 2, 2);
if (array == NULL)
return NULL;

n = array->di nensi ons[0] ;
if (n > array->di nensi ons[1])
n = array->di mensi ons[1];
sum = 0. ;
for (i =0; i <n; i++)
sum += *(double *)(array->data + i*array->strides[0] + i*array-
>strides[1]);

Py DECREF(array);
return PyFl oat_FronDoubl e(sun;

}

61

AJwinN 01 uosualxe D e BUNLIAN

Note that no explicit error checking is necessary in this version, and that the array reference that is returned by
PyArray_Conti guousFr onbj ect () must be destroyed by calling Py_ DECREF() .

Creating NumPy arrays

NumPy arrays can be created by calling the function

PyCbj ect *
PyArray_FronDi ms(i nt n_di nensi ons,

i nt di mensi ons[n_di mensi ons],

int type_num;
The first argument specifies the number of dimensions, the second one the length of each dimension, and the
third one the element data type (see the table in the section “Element datatypes'. The array that isreturned is
contiguous, but the contents of its data space are undefined. Thereis a second function which permits the cre-
ation of an array object that uses a given memory block for its data space:

PyCbj ect *
PyArray_FronDi msAndDat a(i nt n_di nensi ons,

i nt di mensi ons[n_di mensi ons]

int itemtype

char *data);
Thefirst three arguments arethe same asfor Py Ar r ay_Fr onDi ns() . The fourth argument isa pointer to the
memory block that isto be used asthe array's data space. It isthe caller's responsibility to ensure that this mem-
ory block isnot freed before the array object is destroyed. With few exceptions (such as the creation of atem-
porary array object to which no referenceis passed to other functions), this means that the memory block may
never be freed, because the lifetime of Python objects are difficult to predict. Nevertheless, this function can be
useful in special cases, for examplefor providing Python accessto arraysin Fortran common blocks.

Returning arrays from C functions

Array objects can of course be passed out of a C function just likeany other object. However, as has been men-
tioned before, care should be taken not to return zero-dimensional arrays unlessthe receiver isknown to be pre-
pared to handle them. An equivalent Python scalar object should be returned instead. To facilitate this step,
NumPy provides aspecial function

PyCbj ect *

PyArray_Return(PyArrayQhject *array);

which returns the array unchanged if it has one or more dimensions, or the appropriate Python scalar object in
case of azero-dimensional array.

A less simple example

The function shown below performs a matrix-vector multiplication by calling the BLAS function DGEMWV. It
takes three arguments: a scalar prefactor, the matrix (atwo-dimensional array), and the vector (aone-dimen-
sional array). Thereturn valueisaone-dimensiona array. The input values are checked for consistency. In ad-
dition to providing an illustration of the functions explained above, this example also demonstrates how a
Fortran routine can be integrated into Python. Unfortunately, mixing Fortran and C code involves machine-spe-
cific peculiarities. In this example, two assumptions have been made:

» The Fortran function DGEMV must be called from C as dgemv_. Many Fortran compilers apply this rule,
but the C name could aso be dgemv or DGEMV (or in principle anything else; thereis no fixed standard).

» Fortrani nt eger sare equivalent to C | ongs, and Fortran double precision numbers are equivalent to
C doubles. Thisworksfor al systemsthat | have personally used, but again there is no standard.

Also note that the libraries that this function must be linked to are system-dependent; on my Linux system (us-

inggcc/g77), thelibrariesare bl as and f 2c. So hereis the code:

static PyCbject *
matri x_vector (PyQObj ect *self, PyObject *args)

62

Pybj ect *
Py Ar r ay Obj

i nputl, *input?2;
ect *matrix, *vector, *result;

i nt dimensions[1];

doubl e factor[1];

doubl e real _zero[1] = {0.};
long int_one[1l] = {1};

| ong di n0[

1], dim[1];

extern dgenv_(char *trans, long *m |long *n,

if (!PyArg_ParseTupl e(args, "dOO', factor, & nputl, & nput?2))

doubl e *al pha, double *a, long *Ida,
doubl e *x, long *incx,
doubl e *beta, double *Y, long *incy);

return NULL;

matrix = (PyArrayQbj ect *)
PyArray_ Conti guousFronbj ect (i nputl, PyArray DOUBLE, 2, 2);
if (matrix == NULL)
return NULL;
vector = (PyArrayQbject *)
PyArray_Conti guousFrombj ect (i nput2, PyArray DOUBLE, 1,
if (vector == NULL)
return NULL;
if (matrix->dimensions[1] != vector->dinensions[0]) {
PyErr _Set String(PyExc_Val ueError,

"array di mensions are not conpatible");

return NULL;

}

di nensi ons
result = (

[0] = matrix->di nmensions[0];
PyArrayQObj ect *)PyArray_ FronDi ns(1, dinmensions,

PyArray_DOUBLE) ;

if (result

== NULL)

return NULL;

di n0[0]
di mi[0]
dgemv_("T"
(do
rea

(1 ong) matri x- >di mensi ons[0] ;

(1 ong) matri x->di nensi ons[1] ;

, diml, dinmD, factor, (double *)matrix->data, dim,
ubl e *)vector->data, int_one,

| _zero, (double *)result->data, int_one);

return PyArray_Return(result);

}

Note that PyAr ray_Ret ur n() isnot really necessary in this case, since we know that the array being re-
turned is one-dimensional. Nevertheless, it is a good habit to always use this function; its performance cost is

practically zero.

63

AJwinN 01 uosualxe D e BUNLIAN

13. C API Reference

This chapter describes the API for ArrayObjects and Ufuncs.

ArrayObject C Structure and API

Structures

The PyArrayObject is, like al Python types, akind of PyObject. Itsdefinition is:

t ypedef struct ({
Py Obj ect _HEAD

char
i nt
i nt

*dat a;

nd;
*di mensi ons, *strides;

PyObj ect *base;
PyArray_Descr *descr;
int flags;
} PyArraybj ect;
Where Py Obj ect _ HEAD isthe standard Py Obj ect header, and the other fields are:

char *data

i nt

A pointer to thefirst data element of the array.
nd

The number of dimensionsin the array.

*di mensi ons

A pointer to an array of nd integers, describing the number of elements along each dimension. The
sizes are in the conventional order, so that for any array a,
a. shape==(di mensi ons[0], dinmensions[1], ..., dinensions[nd]).

*strides

A pointer to an array of nd integers, describing the address offset between two successive data ele-
ments along each dimension. Note that strides can also be negative! Each number gives the number
of bytesto add to apointer to get to the next element in that dimension. For example, ifmypt r cur-
rently pointsto an element in arank-5 array at indices1, 0, 5, 3, 2 and you want it to point to ele-
ment 1, 0, 5, 4, 2 then youshould add st ri des[3] tothepointer: nyptr += strides[3].
Thisworks even if (and is especially useful when) the array isnot contiguous in memory.

PyCbj ect *base

Used internally in arrays that are created as slices of other arrays. Since the new array sharesits data
areawith the old one, the original array’ s reference count isincremented. When the subarray is gar-
bage collected, the base array’ s reference count is decremented.

PyArray_Desc *descr

See below.

int flags
A bitfield indicating whether the array:
» iscontiguous (rightmost bit)
» ownsthedimensions (next bit to theleft) (?7?)
» ownsthe strides (next bit to the left) (??7?)
* ownsthedataarea

The ownership bits are used by NumPy internally to manage memory allocation and deallocation.
They can be falseif the array isthe result of e.g. a dicing operation on an existing array.

PyArrayDescr *descr

a pointer to adata structure that describes the array and has some handy functions. The slotsin this
structure are:

PyArray_Vect or UnaryFunc *cast|[]
an array of function pointerswhich will cast this arraytype to each of the other data types.
PyArray_GetltenfFunc *getitem

a pointer to afunction which returns a PyObject of the appropriate type given a (char) pointer to
the data to get.

PyArray_Setl|tenfFunc *setitem

a pointer to a function which sets the element pointed to by the second argument to converted
Python Ojbect given asthefirst argument.

int type_num
A number indicating the datatype of the array (i.e. a Py Ar r ay _ XXXX)
char *one
A pointer to arepresentation of one for this datatype.
char *zero
A pointer to a representation of zero for this datatype (especially useful for PyArray OBJECT
types)
char type
A character representing the array’ s typecode (oneof ' cb1si | f dFDO).

The ArrayObject API

In the following op isapointer to aPyCbj ect and ar p isapointer to aPyAr r ayQbj ect . Routines which
return PyQbj ect * return NULL to indicate failure (and follow the standard exception-setting mechanism).
Functions followed by a dagger (1) are functions which return PyObjects whose reference count has been in-
creased by one (new references). See the Python Extending/Embedding manual for details on reference-count
management.

int PyArray_Check(op)
returns 1 if op isaPyAr rayQbj ect or O if itisnot.
int PyArray_Set Numeri cOps(d)
internally used by umat h to setup some of its functions.
i nt PyArray_| NCREF(op)
Used for arrays of python objects (Py Ar r ay _ OBJECT) to increment the reference count of every

65

NWRPY |[dV D -

66

python object in the array op. User code does not typically need to cal this.
i nt PyArray XDECREF(op)

Used for arrays of python objects (Py Ar r ay _ OBJECT) to decrement the reference count of every
python object in the array op.

PyArrayError
Exportsthe array error object. | don't know its use.
voi d PyArray_Set StringFunction(op, repr)

Sets the function for representation of all arraysto op which should be a callable Py Qbj ect . If
r epr isnon-zero then the function corresponding to ther epr string representationis set, otherwise,
that for thest r string representation is set.

PyArray_Descr PyArray_DescrFroniype(type)

returnsaPyArray Descr structure for the datatype given by t ype. The input type can be either
the enumerated types (Py Ar r ay _Fl oat , etc.) or acharacter (' cblsi | f dFDO).

PyObj ect *PyArray_Cast(arp, type) f

returns a pointer to a Py Ar r ay Qbj ect that isar p cast to the array type specified by t ype. Itis
just awrapper around the function defined in ar p- >descr - >cast that handles non-contiguous
arrays and arrays of Python objects appropriately.

int PyArray CanCast Safel y(frontype,totype)

returns 1 if the array with type f r ont ype can be cast to an array of typet ot ype without loss of
accuracy, otherwiseit returns 0. It allows conversion of | ongsto i nt swhich isnot safe on 64-bit
machines. The inputs fronmtype and totype are the enumerated array types (e.g.
PyArray_SBYTE).

int PyArray Object Type(op, mn_type)
returns the typecode to use for a call to an array creation function given an input python sequence
object op and a minimum type value, m n_t ype. It looks at the datatypes used in op, compares
thiswith mi n_t ype and returns a consistent type value that can be used to store dl of the datain
op and satisfying at the minimum the precision of m n_t ype.

int _PyArray_nmultiply_list(list,n)
isautility routine to multiply an array of n integers pointedto by | i st .

int PyArray_ Si ze(op)

isauseful function for returning the total number of elementsinop if op isaPyAr r ayCbj ect, 0
otherwise.

PyQbj ect *PyArray_FronDi ns(nd, di ns, type) T

returns a pointer to a newly constructed Py Ar r ay Obj ect (returned as a PyObj ect) given the
number of dimensionsin nd, an array di ns of nd integers specifying the size of the array, and the
enumerated type of thearray int ype.

PyQbj ect *PyArray_FronDi nsAndDat a(nd, di ns, t ype, data) ¥

This function should only be used to access global data that will never be freed (like FORTRAN
common blocks). It builds aPyAr r ayObj ect inthesameway as PyArray_FronDi ns butin-
stead of allocating new memory for the array elements it uses the bytes pointed to by dat a (a
char *).

PyObj ect *PyArray_Conti guousFronthj ect (op,type, min_dimmax_dim T

returns a contiguous array of typet ype from the (possibly nested) sequence object op. If op isa
contiguous Py Ar r ay Obj ect then areferenceismade; if op isanon-contiguousthenacopy isper-
formed to get a contiguous array; if op isnot a PyAr r ayQhj ect then anew PyAr r ayObj ect
is created from the sequence object and returned. The two parameters m n_di mand max_di mlet
you specify the expected rank of the input sequence. An error will result if the resultingPy Ar r ay -
hj ect does not have rank bounded by these limits. To specify an exact rank requirement set
m n_dim = max_di m To alow for an arbitrary number of dimensions specify ni n_di m =
max_di m = 0.

PyObj ect *PyArray_CopyFronmbj ect (op,type, min_dimnmax_dim ¥

returns a contiguous array similar to Py Ar r ay_Cont i guousFr onObj ect except that a copy of
op isperformed even if ashared array could have been used.

PyObj ect *PyArray_Frontbj ect(op,type, min_dimmax_dim T

returns areferenceto op if op isaPyArrayObj ect and anewly constructed Py Ar r ay Obj ect
if op isany other (nested) sequence object. Y ou must use strides to access the elements of this pos-
sibly discontiguous array correctly.

PyCbj ect *PyArray_Return(apr)

returns a pointer to apr with some extra code to check for errors and be sure that zero-dimensional
arrays are returned as scalars. If ascaar is returned instead of apr then apr ’s reference count is
decremented, so it is safe to use this function in the form:

return PyArray_Return (apr);

PyObj ect *PyArray_Reshape(apr,op) f
returns a reference to apr with a new shape specified by op which must be a one dimensional se-
guence object. One dimension may be specified as unknown by giving avalue lessthan zero, itsval-
ue will be calculated from the size of apr .

PyObj ect *PyArray_Copy(apr) T
returns an element-for-element copy of apr

PyObj ect *PyArray_Take(a,indices,axis) f

theequivalent of t ake(a, indi ces, axis) whichisamethod defined inthe Numeric module
that just calls thisfunction.

int PyArray AsiD(*op, char **ptr, int *n, int type)

This function replaces op with a pointer to a contiguous 1-D PyArrayQbj ect (using
PyArray_Conti guousFr ontbj ect) and setsas output parameters a pointer to the first byte of
the array in pt r and the number of elementsin the array in n. It returns - 1 on failure (op isnot a
1-D array or sequence object that can be cast to typet ype) and 0 on success.

int PyArray_As2D(*op, char **ptr, int *m int *n, int type)

This function replaces op with a pointer to a contiguous 2-D PyArrayQbj ect (using
PyArray_Conti guousFr ontbj ect). It returns -1 on failure (op is not a 2-D array or nested
seguence object that can be cast to type type) and 0 on success. It also sets as output parameters: an
array of pointersin pt r which can be used to accessthe dataasa2-D array so that ptr[i][j] isapoint-
er to thefirst byte of element [i,j] in the array; mand n are set to respectively the number of rows and
columns of the array.

int PyArray_Free(op, ptr)

is supposed to free the alocated data structures and decrease object references when using
PyArray_Asl1Dand PyArray_ As2D but there are suspicions that this codeis buggy.

67

NWRPY |[dV D -

Notes
Number formats, overflow issues, NaN/Inf representations, fpectl module, how to deal with 'missing’ values.

UfuncObject C Structure and API

C Structure

The ufuncobject is a generic function object that can be used to perform fast operations over Numeric Arrays
with very useful broadcasting rules and type conversions performed automatically. The ufuncobject and its API
make it easy and graceful to add arbitrary functions to Python which operate over Numeric arrays. All of the
unary and binary operators currently available in the Numerical extensions (like sin, cos, +, logical_or, etc.) are
implemented using this object. The hooksareall in place to makeit very easy to add any function that takes one
or two (double) arguments and returns asingle (double) argument. It isnot difficult to add support routinesin
order to handle arbitrary functions whose total number of input/output arguments is less than some maximum
number (currently 10).

t ypedef struct ({
Py Obj ect _HEAD
i nt *ranks, *canonical _ranks;
int nin, nout, nargs;
int identity;
PyUFuncGeneri cFunction *functi ons;
voi d **dat a;
int ntypes, nranks, attributes;
char *name, *types;
int check return;

} PyUFuncObj ect ;

where:

i nt *ranks

unused.
i nt *canonical ranks

unused
int nin

the number of input arguments to function
i nt nout

the number of output arguments for the function
int nargs

thetotal number of arguments = ni n + nout
int identity

aflag telling whether the identity for thisfunctionisO or 1 for usein ther educe method for azero
Size array input.

PyUFuncGeneri cFunction *functions

an array of functionsthat perform the innermost looping over theinput and output arrays (I think this
isover asingleaxis). These functions call the underlying math function with the data from the input
arguments along this axis and return the outputs of the function into the correct place in the output
arrayobject (with appropriate typecasting). These functions are called by the general looping code.
There is one function for each of the supported datatypes. Function pointers to do this looping for
types' f',"'d",' F' ,and' D , areprovided in the C-API for functions that take one or two argu-

68

mentsand return oneargument. Each Py UFuncGener i cFunct i on returnsvoi d and hasthefol-
lowing argument list (in order):
args

an array of pointersto the data for each of theinput and output arguments with input arguments
first and output arguments immediately following. Each element of ar gs isachar * to the
first byte in the corresponding input or output array.

di nensi ons
apointer to asinglei nt giving the size of the axis being looped over.

st eps

an array of i nt sgiving the number of bytesto skip to go to the next element of the array for this
loop. There isan entry in the array for each of theinput and output arguments, with input argu-
ments first and output arguments immediately following.

func

a pointer to the underlying math function to be called at each point in thisinner loop. Thisis a

voi d * and must be recast to the required type before actually calling the function e.g. to a

pointer to afunction that takestwo doubl esand returnsa doubl e). If you need to write your

ownPyUFuncGeneri cFuncti on, itismost readableto also haveat ypedef statement that

defines your specific underlying function type so the function pointer cast is somewhat readable.
void **data

apointer to an array of functions (each casttovoi d *) that compute the actual mathematical func-
tion for each set of inputsand outputs. There should be afunction in the array for each supported data
type. This function will be called from the Py UFuncGener i cFunct i on for the corresponding

type.
i nt ntypes

the number of datatypes supported by this function. For datatypes that are not directly supported, a
coercion will be performed if possible safely, otherwise an error will be reported.

i nt nranks
unused.

int attributes
unused.

char *nane

the name of thisfunction (not the same asthedictionary label for thisfunction object, but itis usually
set to the same string). It isprinted when __repr __iscalled for this object, defaultsto " ?" if set
to NULL.

char *types

an array of supported types for this function object. I'm not sure why but each supported datatype
(PyArray_FLOAT, etc.) isentered asmany times asthere are arguments for thisfunction. (nar gs)

int check return

Usually best to set to 1. If this is non-zero then returned matrices will be cleaned up so that rank-0
arrays will bereturned as python scalars. Also, if non-zero, then any math error that setstheer r no
global variable will cause an appropriate Python exception to be raised.

69

NWRPY |[dV D -

UfuncObject C API

There are currently 15 pointersin the C-API array for the ufuncobject which isloaded by i nport _uf unc() .
The macros implemented by thisAPI, available by including the fileuf uncobj ect . h," aregiven below. The
only function normally caled by wuser code is the ufuncobject creation function
PyUFunc_Fr onfFuncAndDat a. Some of the other functions can be used aselements of anarray to be passed
to this creation function.

i nt PyUrFunc_Check(op)
returns 1 if op is aufunc object otherwise returns 0.

PyCbj ect *PyUFunc_FronFuncAndDat a(f uncti ons, data, types, ntypes, nin,
nout, identity, nane, check_return)

returns the ufunc object given its parameters. Thisis the most important function call. It requires de-
fining three arraysto be passed as parameters: f unct i ons, dat a, andt ypes. The argumentsto
be passed are:

functions

an array of functions of type PyUFuncGener i cFunct i on, there should be one function for
each supported datatype. The functions should be in order so that datatypeslisted toward the be-
ginning of the array could be cast as datatypeslisted toward the end.

dat a

an array of pointersto void* the same size asthe functions array and in the same datatype order.
Each element of thisarray isthe actua underlying math function (recast toavoi d *) that will
be called from one of the PyUFuncGener i cFunct i ons. It will operate on each element of
the input NumPy ar r ayobj ect () and return its element-by-element result in the output
NumPy arrayobject(s). Thereis one function call for each datatype supported, (though functions
can berepeated if you handle the typecasting appropriately with the PyUFunc Gener i cFunc-
tion).
types

anarray of PyArray_Types. The size of this array should be (ni n+nout) timesthe size of
one of the previous two arrays. There should be ni n+nout copies of PyAr ray_ XXXXX for
each datatype explicitly supported. (Remember datatypes not explicitly supported will still be ac-
cepted as input arguments to the ufunc if they can be cast safely to a supported type.)

ntypes
the number of supported types for this ufunc.
ni n
the number of input arguments
nout
the number of output arguments
identity

PyUFunc_One, PyUFunc_Zer o, or PyUFunc_None, depending on the desired valuefor the
identity. Thisisonly relevant for functions that take two input arguments and return one output
argument. If not relevant use Py UFunc_None.

name
the name of thisuf uncobj ect foruseinthe__repr __ method.

check _return
the desired value for check_return for this ufuncobject.

70

i nt PyUFunc_GCenericFunction(sel f, args, nps)

allows calling the ufunc from user C routine. It returns O on success and -1 on any failures. Thisis
the core of what happens when aufunc is called from Python. Its arguments are:

sel f
the ufunc object to be called. INPUT
ar gs

a Python tuple object containing the input arguments to the ufunc (should be Python sequence
objects). INPUT

nps
an array of pointersto PyArrayObjects for the input and output argumentsto this function. The
input NumPy arrays are elementsnps[0] . . . mps[sel f - >ni n- 1] . The output NumPy ar-
rays are elementsnps|[sel f->ni n] ... nps[sel f->nargs- 1] . OUTPUT

Thefollowing are al functions of type Py UFuncGener i cFunct i on and are suitable for useinthef unc-
t i ons argument passed to PyUFunc_ Fr onFFuncAndDat a:

PyUFunc_f f As d d

for a unary function that takes a doubl e input and returns adoubl e output as a ufunc that takes
PyAr ray_FLOAT input and returns Py Ar r ay _FLOAT output.

PyUFunc_d_d

for ausing aunary function that takesadoubl e input and returnsadoubl e output as a ufunc that
takes Py Ar r ay _ DOUBLE input and returns Py Ar r ay _ DOUBL E output.

PyUFunc_F F As D D

for aunary function that takesaPy__conpl ex input and returnsaPy _conpl ex output asaufunc
that takes Py Ar r ay_ CFLOAT input and returns Py Ar r ay _ CFLOAT output.

PyUFunc_D D

for aunary function that takesaPy__conpl ex input and returnsaPy _conpl ex output asaufunc
that takes Py Ar r ay_ CFLOAT input and returns Py Ar r ay _ CFLOAT output.

PyUFunc_O O

for a unary function that takes a Py_Obj ect * input and returnsa Py _Cbj ect * output asa
ufunc that takes Py Ar r ay _ OBJECT input and returns Py Ar r ay_ OBJECT output

PyUFunc_ff f_ As dd_d

for a binary function that takes two doubl e inputs and returns one doubl e output as a ufunc that
takes Py Ar r ay _FLOAT input and returns Py Ar r ay _FLOAT output.

PyUFunc_dd_d

for a binary function that takes two doubl e inputs and returns one doubl e output as a ufunc that
takes Py Ar r ay _ DOUBLE input and returns Py Ar r ay _ DOUBL E output.

PyUFunc_FF_F_As_DD D

for a binary function that takes two Py _conpl ex inputs and returnsa Py _conpl ex output as a
ufunc that takes Py Ar r ay _ CFLOAT input and returns Py Ar r ay _ CFLOAT output.

PyUFunc_DD D

for a binary function that takes two Py _conpl ex inputs and returnsa Py _conpl ex output as a
ufunc that takes Py Ar r ay _ CFLOAT input and returns Py Ar r ay_ CFLOAT output

71

30UBRRPY IdV D »

72

PyUFunc_0OO O

for aunary function that takestwoPy _Obj ect * inputandreturnsaPy_Obj ect * outputasa
ufunc that takes Py Ar r ay _ OBJECT input and returns Py Ar r ay _ OBJECT output

PyUFunc_O O net hod

for aunary function that takesa Py _Obj ect * input and returnsa Py_Cbj ect * output and is
pointed to by a Python method as a ufunc that takes PyArray OBJECT input and returns
PyArray_OBJECT output

PyAr r ayMap

an exported API that was apparently considered but never implemented probably because the func-
tionality is already available with Python'smaip function.

14. Glossary

This section will define afew of the technical words used throughout this document. [Please let us know of any
additionsto thislist which you feel would be helpful -- the authors]

typecode: asingle character describing the format of the data stored in an array. For example, 'b’ refersto
unsigned byte-sized integers (0-255).

ufunc / universal function: a ufunc is a callable object which performs operations on all of the elements of
its arguments, which can belists, tuples, or arrays. Many ufuncs are defined in the umat h module.

array / multiarray: an array refers to the Python object type defined by the NumPy extensions to store and
manipul ate numbers efficiently.

UserArray: The UserArray module defines a UserArray class which should be subclassed by users wishing
to have classes which behave similarly to the array object type.

Matrix: The Matrix module defines a subclass Matrix of the UserArray class which is specidized for linear
algebramatrices. Most notably, it overrides the multiplication operator on Matrix instances to perform ma-
trix multiplication instead of element-wise multiplication.

rank: therank of an array isthe number of dimensionsit has, or the number of integersin its shape tuple.

shape: array objects have an attribute called shape which isnecessarily atuple. An array with an empty tu-
ple shapeistreated like ascalar (it holds one element).

73

AJesso|)

74

PART Il: Optional Packages

This part contains descriptions of the packages that are included with the distribution but
which are not necessary for using Numeric arrays. The packages are for the most part in
the Packages subdirectory of the source distribution, and can be installed anywhere in the
Python module search path. Each has its own “setup.py” to useto build and install the
package.

For historical reasons, some of these packages are currently installed inside the Numeric
package rather than on their own. We hope to remedy thisin the future.

The subdirectory Packages contains directories, each of which containsits own installation script setup.py. As
with the main directory, these packages are generally compiled and installed using the command

python setup.py install
The Makefile in the main directory will do thisfor all the packages provided.

In addition, many people make available libraries that use Numeric. At the moment a centralized reference for
these does not exist, but they are usually announced on the discussion list; also check the project web page.

Table5: Descriptions of the Optional Packages

Package _—
« Description Reference
Name
FFT Fast Fourier Transforms “FFT Reference’ on pag €77
LinearAlgebra | Basic linear algebra “LinearAlgebra Reference” on
page 80
RandomArray | Arraysof random numbers. “RandomArray Reference” on
page 82
RNG Generatorsfor independent streams of random | “Independent Random Streams’ on
numbers from various distributions and arrays | page 87
of same.
MA Masked arrays, that is, arrays that have miss- “Masked Arrays’ on page 89
ing or invalid entries.

75

License and disclaimer for packages MA and RNG

Package MA was written by Paul Dubois, LLNL. Package RNG waswritten by Konrad Hinsen after modifying
an earlier package UNRG by Paul Dubois and Fred Fritsch.

Copyright (c) 1999, 2000. The Regents of the University of California. All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose without feeis hereby granted, pro-
vided that this entire notice isincluded in all copies of any software whichisor includesa copy or modification
of this softwareand in al copies of the supporting documentation for such software.

Thiswork was produced at the University of California, Lawrence Livermore National Laboratory under con-
tract no. W-7405-ENG-48 between the U.S. Department of Energy and The Regents of the University of Cali-
forniafor the operation of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately-owned rights. Reference herein to any specific commercial products, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California. The viewsand
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government
or the University of California, and shall not be used for advertising or product endorsement purposes.

76

15. FFT Reference

The FFT.py module provides a simple interface to the FFTPACK FORTRAN library,
which isa powerful standard library for doing fast Fourier transforms of real and complex
data sets, or the C fftpack library, which is algorithmically based on FFTPACK and
provides a compatible interface. On some platforms, optimized version of one of these
libraries may be available, and can be used to provide optimal performance (see
“Compilation Notes” on page 79).

Python Interface

The Python user imports the FFT module, which providesaset of utility functions which provide access to the
most commonly used FFT routines, and allows the specification of which axes (dimensions) of the input arrays
areto be used for the FFT’s. Theseroutines are:

fft(data, n=None, axis=-1)

Performs an-point discrete Fourier transform of the array data. n defaultsto the size of data. Itismost efficient
for n apower of two. If nislarger than dat a, then dat a will be zero-padded to make up the difference. If n
is smaller than data, then dat a will be aiased to reduceits size. This also stores a cache of working memory
for different sizes of fft's, so you could theoretically run into memory problemsif you call thistoo many times
with too many different n's.

The FFT is performed along the axisindicated by the axi s argument, which defaults to be the last dimension
of dat a.

Theformat of the returned array is acomplex array of the same shape as dat a, where the first element in the
result array contains the DC (steady-state) value of the FFT, and where each successive ... XXX

Example of use:

>>> print fft(array((1,0,1,0,1,0,1,0))+ 10).real
[84. 0. 0. 0. 4. 0. 0. 0.]
>>> print fft(array((0,1,0,1,0,1,0,1))+ 10).real
[84. 0. 0. 0. -4. 0. 0. 0.]
>>> print fft(array((0,1,0,0,0,1,0,0))+ 10).real
[82. 0. 0. 0. -2. 0. 0. 0.]

inverse_fft(data, n=None, axis=-1)

Will return the n point inverse discrete Fourier transform of dat a. n defaults to the length of dat a. Thisis
most efficient for n a power of two. If n islarger than dat a, then dat a will be zero-padded to make up the
difference. If n issmaller than dat a, then dat a will be aliased to reduce its size. Thisalso stores a cache of
working memory for different sizes of FFT’s, so you could theoretically run into memory problems if you call
thistoo many times with too many different n's.

real_fft(data, n=None, axis=-1)

Will return the n point discrete Fourier transform of the real valued array dat a. n defaultsto the length of da-
t a. Thisismost efficient for n a power of two. The returned array will be one half of the symmetric complex
transform of thereal array.

77

80UBRIBY 14

>>> x = cos(arange(30.0)/30.0*2*pi)
>>> print real _fft(x)

[-1. +0. | 13. 69406641+2. 91076367]

- 0. 91354546- 0. 40673664] - 0. 80901699- 0. 58778525

-0.66913061- 0. 74314483] -0.5 - 0. 8660254]

-0.30901699- 0. 95105652] - 0. 10452846- 0. 9945219
0. 10452846- 0. 99452109j 0. 30901699- 0. 95105652
0.5 - 0. 8660254] 0. 66913061- 0. 74314483]
0.80901699- 0. 58778525] 0. 91354546- 0. 40673664
0.9781476 -0.20791169] 1. +0. |]

inverse_real_fft(data, n=None, axis=-1)
Will return the inverse FFT of the real valued array dat a.

fft2d(data, s=None, axes=(-2,-1))
Will return the 2-dimensional FFT of the array dat a.

real_fft2zd(data, s=None, axes=(-2,-1))
Will return the 2d FFT of thereal valued array dat a.

C API

The interface to the FFTPACK library is performed via the fftpackmodule module, which is responsible for
making surethat thearrays sent to the FFTPACK routines arein theright format (contiguous memory locations,
right numerical storage format, etc). It providesinterfaces to the following FFTPACK routines, which are also
the names of the Python functions:

o cffti(i)
« cfftf(data, savearea)
- cfftb(data, savearea)
o rffti(i)
« rfftf(data, savearea)
« rfftb(data, savearea)

The routines which start with ¢ expect arrays of complex numbers, the routines which start with r expect real
numbers only. The routines which end with i are the initalization functions, those which end with f perform
the forward FFTs and those which end with b perform the backwards FFTs.

The initialization functions require a single integer argument corresponding to the size of the dataset, and re-

turns awork array. The forward and backwards FFTs require two array arguments -- the first isthe data array,

the second is the work array returned by theinitialization function. They return arrays corresponding to the co-
efficients of the FFT, with thefirst element in the returned array corresponding to the DC component, the sec-

ond oneto the first fundamental, etc.The length of thereturned array is1 + half the length of theinput array in

the case of real FFTs, and the same size as theinput array in the case of complex data.

cos(arange(30.0)/30.0*2*pi)
rffti(30)
rfftf(x, w

>>> X
>>> W
>>> f
>>> f[0]
(-1+0j)
>>> f[1]
(13.6940664103+2. 91076367145)
>>> f[2]

78

(-0.913545457643- 0. 406736643076)

Compilation Notes

On some platforms, precompiled optimized versions of the FFTPACK library are preinstalled on the operating
system, and the compilation procedure needs to be modified to force the fftpackmodul e file to be linked against
those rather than the fftpacklite.c file which is shipped with NumPy.

79

80UBRIBY 14

16. LinearAlgebra Reference

The LinearAlgebrapy module provides a simple interface to the low-level linear agebra
routines provided by either the LAPACK FORTRAN library or the compatible lapack_lite
Clibrary.

Python Interface

solve_linear_equations(a, b)

This function solves a system of linear equations with a square non-singular matrix aand a right-hand-side vec-
tor b. Several right-hand-side vectors can be treated simultaneously by making b atwo-dimensional array (i.e.
a sequence of vectors). The function inverse(a) calculates the inverse of the square non-singular matrix a by
caling solve linear_equations(a, b) with a suitableb.

inverse(a)

This function returns the inverse of the specified matrix a which must be square and non-singular. To within
floating point precision, it should aways be true that:

matri xmul tiply(a, inverse(a)) == identity(len(a))

To test this claim, one can do e.g.:

>>> a = reshape(arange(25.0), (5,5)) + identity(5)
>>> print a

([1. 1. 2. 3. 4]
[5. 7. 7. 8. 9]
[10. 11. 13. 13. 14.]
[15. 16. 17. 19. 19.]
[20. 21. 22. 23. 25.]]

>>> inv_a = inverse(a)
>>> print inv_a
[[0.20634921 -0.52380952 -0.25396825 0.01587302 0.28571429]
[-0.5026455 0.63492063 -0.22751323 -0.08994709 0.04761905]
[-0.21164021 -0.20634921 0.7989418 -0.1957672 -0.19047619]
[0.07936508 -0.04761905 -0.17460317 0.6984127 -0.42857143]
[0.37037037 0.11111111 -0.14814815 -0.40740741 0.33333333]]
>>> # Verify the inverse by printing the |argest absolute el ement
of a * ar{-1} - identity(5)
print "Inversion error:", \
maxi mum r educe(fabs(ravel (dot(a, inv_a)-identity(5))))
Inversion error: 2.6645352591e-015

eigenvalues(a)
This function returns the eigenvalues of the square matrix a.

>>> print a
[[1. 0. 0. O
[0. 2. 0. O

= o
[E———

80

0. 0. 3. 0. 0.]

0. 0. 0. 4. 0.]

0. 0. 0. 0. 1.]]
> print eigenval ues(a)
1. 2. 3. 4. 1.]

[
[
[
>>
[
eigenvectors(a)

This function returns both the eigenvalues and the eigenvectors, the latter as atwo-dimensional array (i.e. ase-
guence of vectors).

>>> print a

[[2. 0. 0. 0. 0.]
[0. 2. 0. 0. 1.]
[0. 0. 3. 0. 0.]
[0. 0. 0. 4. 0.]
[0. 0. 0. 0. 1.]]
>>> eval ues, evectors = eigenvectors(a)

>>> print eval ues
[1. 2. 3. 4. 1.]
>>> print evectors

[[1. 0. 0 0 0.]
[0. 1. 0. 0 0.]
[0. 0. 1. 0 0.]
[0. 0. 0 1 0.]
[0. -0.70710678 O. 0 0.70710678]]

singular_value_decomposition(a, full_matrices=0)

This function returns three arrays V, S, and W' whose matrix product is the original matrix a. V and W' are
unitary matrices (rank-2 arrays), whereas S is the vector (rank-1 array) of diagona elements of the singular-
value matrix. Thisfunction is mainly used to check whether (and in what way) amatrix isill-conditioned.
generalized_inverse(a, rcond=1e-10)

This function returns the generalized inverse (also known as pseudo-inverse or Moore-Penrose-inverse) of the
matrix a. It has numerous applications related to linear equations and | east-squares problems.
determinant(a)

This function returns the determinant of the square matrix a.

linear_least_squares(a, b, rcond=e-10)

This function returns the least-squares solution of an overdetermined system of linear equations. An optional

third argument indicates the cutoff for the range of singular values (defaults to 10-10). There are four return
values: the | east-squares solution itself, the sum of the squared residuals (i.e. the quantity minimized by the so-
lution), the rank of the matrix a, and the singular values of ain descending order.

Compilation Notes

On some platforms, precompiled optimized versions of the LAPACK library are preinstalled on the operating
system, and the setup procedure needs to be modified to force the lapackmodule.c file to be linked against those
rather than the lapack_litelibrary.

81

30UaJB Joy eIEB|eaulT .

17. RandomArray Reference

The RandomArray.py module (in conjunction with the ranlibmodule.c file) provides a
high-level interface to the ranlib module, which provides a good quality C implementation
of arandom-number generator.

Python Interface

seed(x=0, y=0)

Theseed() function takestwo integersand setsthe two seeds of the random number generator to those values.
If the default values of O are used for both x and y, then a seed is generated from the current time, providing a
pseudo-random seed.

get_seed()

Theget _seed() function returns the two seeds used by the current random-number generator. It ismost of-
ten used to find out what seeds the seed() function chose at the last iteration. [thread-safety issue?]

random(shape=ReturnFloat)

Ther andom() function takes a shape, and returns an array of double-precision floatings point numbers be-
tween 0.0 and 1.0. Neither 0.0 nor 1.0 isever returned by thisfunction. If no argument is specified, the function
returns a single floating point number (not an array). The array isfilled from the generator following the canon-
ical array organization (seediscussion of the. f | at attribute)

uniform(minimum, maximum, shape=ReturnFloat)

The uni f or n() function returns an array of the specified shape and containing double-precision floating
point random numbers strictly between minimum and maximum. If no shape is specified, a single number is
returned.

randint(minimum, maximum, shape=ReturnFloat)

Ther andi nt () function returns an array of the specified shape and containing random (standard) integers
greater than or equal to m ni mumand strictly lessthan maxi mum If no shapeis specified, asingle number is
returned.

permutation(n)

Theper mut at i on() functionreturnsan array of theintegersbetween 0 andn- 1, inan array of shape(n,),
and with its elements randomly permuted.

An example use of the RandomArray module (exact output will be different each time!):

>>> from RandomArray inport *

>>> seed() # Set seed based on current tine
>>> print get_seed() # Find out what seeds were used
(897800491, 192000)

>>> print randon()

0. 0528018975065

>>> print randon((5,2))

[[0.14833829 0.99031458]

82

0. 7526806 0.09601787]

0. 1895229 0.97674777]

0.46134511 0.25420982]

0.66132009 0.24864472]]

>>> print uniform(-1,1,(10,))

[0.72168852 -0.75374185 -0. 73590945 0.50488248 -0. 74462822 0.09293685
-0. 65898308 0.9718067 -0.03252475 0.99611011]

>>> print randint(0,100, (12,))

[28 5 96 19 1 32 69 40 56 69 53 44]

>>> print pernutation(10)

[428917 365 0]

>>> seed(897800491, 192000) # resetting the same seeds

>>> print randon() # yields the same nunbers

0. 0528018975065

—,r———

Floating point random arrays

standard_normal (shape=ReturnFloat)

The standard_normal () function returns an array of the specified shape that contains double precision floating
point numbers normally (Gaussian) distributed with mean zero and variance and standard deviation one. If no
shapeis specified, a single number is returned.

normal (mean, stddev, shape=ReturnFloat)

Thenormal () function returnsan array of the specified shape that contai ns double precision floating point num-
bers normally distributed with the specified mean and standard deviation. If no shapeis specified, asingle num-
ber is returned.

multivariate_normal (mean, covariance) or
multivariate_normal (mean, covariance, leadingAxesShape)

Themultivariate_normal () function takes a one dimensional array argument mean and atwo dimensional array
argument covariance. Suppose the shape of mean is (n,). Then the shape of covariance must be (n,n). The
multivariate_normal () function returns a double precision floating point array. The effect of the leadin-
gAxesShape parameter is:

» If noleadingAxesShapeis specified, then an array with shape (n,) isreturned containing avector of numbers
with amultivariate normal distribution with the specified mean and covariance.

» If leadingAxesShape is specified, then an array of such vectorsisreturned. The shape of the output is |ead-
ingAxesShape.append ((n,)). The leading indicesinto the output array select amultivariate normal from the
array. Thefinal index selects one number from within the multivariate normal.

In either case, the behavior of multivariate_normal () is undefined if covariance is not symmetric and positive
definite.

exponential (mean, shape=ReturnFloat)

The exponential () function returns an array of the specified shape that contains double precision floating point
numbers exponentially distributed with the specified mean. If no shapeis specified, asingle number is returned.

beta (a, b, shape=ReturnFloat)
The beta () function returns an array of the specified shape that contains double precision floating point num-

bers beta distributed with alpha parameter a and beta parameter b. If no shape is specified, a single number is
returned.

83

30uaJB oy Aeliywopuey

gamma (a, r, shape=ReturnFloat)

The gamma () function returns an array of the specified shape that contains double precision floating point num-
bers beta distributed with |ocation parameter aand distribution shape parameter r. If no shape is specified, asin-
gle number is returned.

chi_square (df, shape=ReturnFloat)

The chi_square() function returns an array of the specified shape that contains double precision floating point
numbers with the chi square distribution with df degrees of freedom. If no shapeis specified, a single number
isreturned.

noncentral_chi_square (df, nonc, shape=ReturnFloat)

The noncentral_chi_square() function returns an array of the specified shape that contains double precision
floating point numbers with the chi square distribution with df degrees of freedom and noncentrality parameter
nconc. If no shapeis specified, asingle number is returned.

F (dfn, dfd, shape=ReturnFloat)

The F () function returns an array of the specified shape that contains double precision floating point numbers
with the F distribution with dfn degrees of freedom in the numerator and dfd degrees of freedom in the denom-
inator. If no shape is specified, asingle number is returned.

noncentral_F (dfn, dfd, nconc, shape=ReturnFloat)

The noncentral_F () function returns an array of the specified shape that contains double precision floating
point numbers with the F distribution with dfn degrees of freedom in the numerator, dfd degrees of freedomin
the denominator, and noncentrality parameter nconc. If no shapeis specified, a single number is returned.

Integer random arrays

binomial (trials, prob, shape=Returnint)

The binomial () function returnsan array with the specified shape that contains integer numbers with the bino-
mial distribution with trialstrials and event probability prob. In other words, each value in the returned array is
the number of times an event with probability prob occurred within trials repeated trials. If no shapeis speci-
fied, asingle number is returned.

negative_binomial (trials, prob, shape=Returnint)

The negative_binomial () function returns an array with the specified shape that containsinteger numbers with
the negative binomial distribution with triastrials and event probability prob. If no shapeisspecified, asingle
number is returned.

poisson (mean, shape=Returnint)

The poisson () function returns an array with the specified shape that contains integer numberswith the Poisson
distribution with the specified mean. If no shape is specified, asingle number is returned.

multinomial (trials, probs) or multinomial (trials, probs, leadingAxesShape)
The multinomial () function returns an array with that containsinteger numbers with the multinomial distribu-
tion with trials trials and event probabilities given in probs. probs must be a one dimensional array. There are

len(probs)+1 events. probg[i] is the probability of the i-th event for O<=i<len(probs). The probability of event
len(probs) is 1.-Numeric.sum(prob).

84

Thefirst form returns an integer array of shape (Ien(probs)+1,) containing one multinomially distributed vector.
The second form returns an array of shape (m, n, ..., len(probs)+1) where (m, n, ...) isleadingAxesShape. In this
case, each output[i,j,...,:] is an integer array of shape (len(prob)+1,) containing one multinomially distributed
vector..

Examples

Most of the functions in this package take zero or more distribution specific parameters plus an optional shape
parameter. The shape parameter gives the shape of the output array:

>>> from RandomArray inport *
>>> print standard_nornmal ()
-0. 435568600893
>>> print standard_nornal (5)
[-1.36134553 0.78617644 -0.45038718 0. 18508556 0.05941355]
>>> print standard_normal ((5, 2))
[[1.33448863 -0.10125473]
[0.66838062 0.24691346]
[-0.95092064 0.94168913]
[-0.23919107 1.89288616]
[0.87651485 0.96400219]]
>>> print normal (7., 4., (5,2)) #mean=7, std. dev.=4
[[2.66997623 11.65832615]
[6.73916003 6.58162862]
[8.47180378 4.30354905]
[1.35531998 -2.80886841]
[7.07408469 11.39024973]]
>>> print exponential (10., 5) #nean=10
[18.03347754 7.11702306 9.8587961 32.49231603 28.55408891]
>>> print beta(3.1, 9.1, 5) # alpha=3.1, beta=9.1
[0.1175056 0.17504358 0.3517828 0.06965593 0.43898219]
>>> print chi_square(7, 5) # 7 degrees of freedom (dfs)
[11.99046516 3.00741053 4.72235727 6.17056274 8.50756836]
>>> print noncentral _chi_square(7, 3, 5) # 7 dfs, noncentrality 3
[18.28332138 4.07550335 16.0425396 9.51192093 9. 80156231]
>>> F(5, 7, 5) # 5 and 7 dfs
array([0.24693671, 3.76726145, 0.66883826, 0.59169068, 1.90763224])
>>> noncentral F(5, 7, 3., 5) # 5 and 7 dfs, noncentrality 3
array([1.17992553, 0.7500126 , 0.77389943, 9.26798989, 1.35719634])

>>> binomal (32, .5, 5) # 32 trials, prob of an event = .5
array([12, 20, 21, 19, 17])
>>> negative_binom al (32, .5, 5) # 32 trials: prob of an event = .5

array([21, 38, 29, 32, 36])

Two functions that return generate multivariate random numbers (that is, random vectors with some known re-
lationship between the elements of each vector, defined by the distribution). They are multivariate_normal ()
and multinomial (). For these two functions, the lengths of the leading axes of the output may be specified. The
length of the last axis is determined by the length of some other parameter.

>>> mul tivariate_normal ([1,2], [[21,2],[2,1]], [2,3])
array([[[0.14157988, 1.46232224],
[-1.11820295, -0.82796288],
1. 35251635, -0.2575901]],
[[-0.61142141, 1.0230465 1],
-1. 08280948, -0.55567217],
2

49873002, 3.28136372]]11])

—r———

85

30uaJB oy Aeliywopuey

>>> x = multivariate_normal ([10,100], [[21,2],[2,1]], 210000)

>>> x_mean = sun{(x)/ 10000

>>> print x_mean

[9.98599893 100. 00032416]

>>> X_mnus_nean = X - X_nean

>>> cov = matrixmultiply(transpose(x_m nus_mean), X_m nus_nean) / 9999.
>>> cov

array([[2.01737122, 1.00474408],

[1.00474408, 2.0009806]11)

The apriori probabilities for a multinomia distribution must sum to one. The prior probability argument to
multinomial () doesn't give the prior probability of the last event: it is computed to be one minus the sum of the
others.

86

>>> nultinomal (16, [.1, .4, .2]) # prior probabilities [.1, .4, .2, .3]
array([2, 7, 1, 6])

>>> multinomal (16, [.1, .4, .2], [2,3]) # output shape [2,3,4]
array([[[21, 9, 1, 5],

[0, 10, 3, 3],
[4, 9, 3, 0]],
[[1, 6, 1, 8],
[3, 4, 5, 4],
[1, 5 2, 8]]])

18. Independent Random Streams

The RNG package provides any number of independent random number generatorstied to
adistribution. Distributionsinclude exponential, normal, and log-normal distributions, but
adding othersis not difficult. Contributions of code for other distributions are welcome!

Background

RNG was written by Konrad Hinsen based on the package URNG by Paul Dubois and Fred Fritsch of LLNL.
This package has been released for unlimited redistribution. Please see “ License and disclaimer for packages
MA and RNG” on pag e76.

Usage

Package RNG installs two modules: RNG.RNG, and RNG.ranf. The former isa C extension that does the gen-
eration. The latter is an easy-to-use interface for asingle uniform distribution.

Module RNG
Module RNG defines the function:
CreateGenerator (s, distribution=UniformDistribution(0., 1.))

creates a new random number generator with a distribution. The random numbers produced by the
generator sample the distribution and are independent of other generators created earlier or later.
Its first argument, an integer, determines the initial state:

* 0; Usethedefault initial seed value.
* <0:; Set arandom value for the seed from the system clock.
o >0 ; Set seed directly (32 bits only).

The default distribution is a uniform distribution on [0., 1.); other distributionsare obtained by supplying
a second argument which must be a distribution. Currently RNG defines the following dis-
tribution types:

» UniformDistribution(a, b) -- a uniform distribution of numbersin the interval [a, b)

* NormalDistribution(mu, sigma) -- anormal distribution with mean mu and standard deviation sigma

» Exponentia Distribution(l) -- an exponential distribution of positive numbers with decay constant I.

» LogNormalDistribution(mean, std) -- alog normal distribution with given mean and standard deviation.
Generator objects

Once a generator is created, it contains these methods:

» sample(n) will return an array of n samples from the generator.

» ranf() will return one sample from the generator.

87

SWEa 1S Wopuey Juspuadspu| e

Module ranf

Module ranf, whose main function ranf() is equivalent to the old ranf generator on Cray 1 computers, defines
these facilities.

Attribute standard_generator is an instance of RNG.UniformDistribution(0., 1.).
ranf(): returns arandom number from the standard_generator.

random_sample(* n) returns a Numeric array of samples from the standard_generator.
random sanpl e(n) = array of n random nunbers;

random sanpl e(nl, n2, ...)= array of shape (nl, n2, ..)
Examples
The test routine Demo/RNGdemo. py illustrates some common usage of both RNG and Numeric

The test routine RNGtest2.py combines RNG with Konrad Hinsen’s Statistics package to do a
test of the log normal distribution

Here is one function from RNGdemo.py, showing atest of anormal distribution.

from Nuneric inport *
i mport RNG

def test_normal (mean, std, n=10000):
di st = RNG Nornmal Di stribution(nean, std)
rng = RNG CreateGenerator (0, dist)
val ues = rng. sanpl e(n)
m = sum(val ues)/n
s = sqgrt(sun((val ues-m**2)/n)
return (m s)

88

19. Masked Arrays

Masked arrays are arrays that may have missing or invalid entries. Module MA providesa
work-alike replacement for Numeric that supports data arrays with masks.

What is a masked array?

Masked arrays are arrays that may have missing or invalid entries. Module MA provides awork-alike replace-
ment for Numeric that supports data arrays with masks. A mask is either None or an array of ones and zeros,
that determines for each element of the masked array whether or not it contains an invalid entry. The package
assures that invalid entries are not used in calculations.

A particular element is said to be masked (invalid) if the mask is not None and the corresponding element of the
mask is 1; otherwise it is unmasked (valid).

This package was written by Paul F. Dubois at Lawrence Livermore National Laboratory. Please see the legal
noticein the software and on “License and disclaimer for packages MA and RNG” on pa ge76.

Installing and using MA

MA is one of the optional Packages and installing it requires a separate step as explained in the Numeric
README. To ingtall just the MA package using Distutils, in the MA top directory enter:

pyt hon setup.py install
Use MA as areplacement for Numeric:

fromMA inport *
x = array([1, 2, 3])
To create an array with the second element invalid, we would do:

y = array([1, 2, 3], mask = [0, 1, 0])
To create amasked array where dl values “near” 1.e20 are invalid, we can do:

z = masked_values ([1.0, 1.e20, 3.0, 4.0], 1.e20)
For a complete discussion of creation methods for masked arrays please see “ Constructing masked arrays’ on

page 92.

The Numeric module is an attributein MA, so to execute amethod foo from Numeric, you can reference it as
Numeric.foo(...).

Usually people use both MA and Numeric this way, but of course you can always fully-qualify the names:

i mport MA

x = MA array([1, 2, 3])
The principal feature of module MA is class MaskedArray, the class whose instances are returned by the array
constructors and most functions in module MA. We will discuss this class first, and later cover the attributes
and functionsin module MA. For now sufficeit to say that among the attributes of the module are the constants
from module Numeric including those for declaring typecodes, NewAxis, and the mathematical constants such
aspi and e. An additional typecode, MaskType, isthe typecode used for masks.

Class MaskedArray

In Module MA, an array is aninstance of class MaskedArray, which isdefined in the module MA. Aninstance
of class MaskedArray can be thought of ascontaining the following parts:

89

sheliy poxse N o

» Anarray of data, of any shape;
» A mask of ones and zeros of the same shape as the data; and,

« A “fill valug’ -- thisisavalue that may be used to replacethe invalid entriesin order to return aplain Nu-
meric array. The chief method that doesthisisthe method filled discussed below.

Wewill usethe terms“invalid value” and “invalid entry” to refer to the data value at a place corresponding to

amask value of 1. It should be emphasized that the invalid values arenever used in any computation, and that

thefill valueis not used for any computational purpose. When an instance x of class MaskedArray is converted

to its string representation, it is the result returned by filled (x) that is converted to a string.

Attributes of masked arrays

flat: (deprecated) returnsthe masked array as one-dimensiond. Thisis provided for compatibility with Numer-
ic. ravel (x) is preferred.

real: returnsthe real part of thearray if complex.
imaginary: returnsthe imaginary part of the array if complex.

shape: The shape of a masked array can be accessed or changed by using the special attribute shape, as with
Numerical arrays.

shared_data: Thisread-only flag if true indicates that the masked array shared a reference with the original
data used to construct it at the time of construction. Changes to the original array will affect the masked array.
(Thisis not the default behavior; see“ Copying or not?’ on page94.) Thisflag isinformational only.

shared_mask: This read-only flag if true indicates that the masked array currently shares a reference to the
mask used to create it. Unlike shared data, this flag may change as the result of modifying the array contents,
as the mask uses copy on write semanticsiif it isshared.

Methods on masked arrays.

Table6: Methods on masked arrays; attributes, constructors and operations

discussed separately.
Method Description Sample syntax
astype (typecode) return self as array of given type. y = X.astype (Float32)
compressed () return an array of thevalid elements. Result | y = x.compressed()

is one-dimensional.

filled (fill_value=None) | filled(self, self .fill_value()); see description | y = x.filled()
of module method filled.

fill_vaue() Get the current fill value. v = x.fill_value ()

filled (value = None) Same as filled(self, value); see “filled is numar = x.filled ()
very important. It convertsits argument to a
plain Numeric array.” on page 93.

get_shape () Return the tuple giving the current shape. s=x.get_shape ()
Same as shape attribute. s = Xx.shape

ids() Return the ids of the dataand mask areas id1, id2 = x.ids ()

iscontiguous () Is the data area contiguous? See Numeric if x.iscontiguous ()
manual.

mask () Return the data mask, or None. m = x.masK ()

90

Table6: Methods on masked arrays; attributes, constructors and operations

discussed separately.

M ethod

Description

Sample syntax

put (values)

Set the value at each non-masked entry to
the corresponding entry in values. The mask
is unchanged. See also module method put.

X.put (values)

putmask (values)

Eliminate any masked values by setting the
value at each masked entry to the corre-
sponding entry in values. Set the mask to
None.

X.putmask(val ues)
assert getmask(x) isNone

raw_data () A reference to the non-filled data; portions | d=x.raw_data ()

may be meaningless. Expert use only.
savespace (V) Set the spacesaver attribute to v. x.savespace (1)
set_fill_value() Set the fill valueto v. Omit v to restore x.set_fill_value (1.€21)

default.

set_shape (args...)

shape (n, m, ...) setsthe shape.

x.set_shape (3, 12)

size (axis) Number of elementsin array, or in apartic- | totalsize=x.size()
ular axis. col_len =x.size (1)
spacesaver() Query the spacesave flag. flag = x.spacesaver()

unshare_mask()

If shared_mask is currently true, replaces
thereferenceto it with acopy.

x.unshare_mask()

typecode ()

Return the type of the data. See module Pre-
cision.

Z = X.typecode()

91

sheliy poxse N o

Constructing masked arrays

1. array (data, typecode = None, copy = 1, savespace = 0, mask = None, fill_value = None)
Creates a masked array with the given data and mask. The name array is simply an alias for the class
name, MaskedArray, The fill value is set to fill_value, and the savespace flag is applied. If data is a
MaskedArray, its mask, typecode, spacesaver flag, and fill value will be used unless specifically specified
by one of the remaining arguments. In particular, if disamasked array, array(d, copy=0) isd.

2. masked_array (data, mask = None, fill_value = None)
Thisisan easier-to-use version of array, for the common case of typecode = None, copy = 0. When data
is newly-created this function can be used to makeit a masked array without copying the dataif data is
already a Numeric array.

3. masked_values (data, value, rtol=1.e-5, atol=1.e-8, typecode = None, copy = 1, savespace = 0)
Constructs a masked array whose mask is set at those places where
abs (data - value) < atol + rtol * abs (data).
That is acareful way of saying that those elements of the data that have value = value (to within atoler-
ance) are to betreated asinvalid. If datais not of afloating point type, calls masked_object instead.

4. masked_object (data, value, copy=1, savespace=0)
Creates amasked array with those entries marked invalid that are equal to value. Again, copy and
savespace are passed on to the Numeric array constructor.

5. asarray(data, typecode=None)
This isthe same as array(data, typecode, copy=0). Thisis ashort way of ensuring that something is an
instance of MaskedArray of agiven type before proceeding, asin
data = asarray(data).

If data already isamasked array and typecode is None then the return valueis data; nothing is copied in
that case.

6. masked_where (condition, data, copy=1)
Creates amasked array whose shape isthat of condition, whose values are those of data, and which is
masked where elements of condition are true.

The following additional constructors are provided for convenience.

» masked_greater (data, value, copy=1) isequivalent to masked_where (greater (data, value), data)). Sim-
ilarly, masked_greater_equal, masked_equal, masked_not_equal, masked_less, masked_less equal
are called in the same way with the obvious meanings. Note that for floating point data, masked_valuesis
preferable to masked_equal in most cases.

» masked_inside (data, v1, v2, copy=1) creates an array with valuesin the closed interval [v1, v2] masked.
vl and v2 may bein either order.

» masked_outside (data, v1, v2, copy=1) creates an array with values outside the closed interva [v1, v2]
masked. v1 and v2 may bein either order.

On entry to any of these constructors, data must be any object which the Numeric package can accept to create
an array (with the desired typecode, if specified). The mask if given must be None or any object that can be
turned into a Numeric array of integer type (it will be converted to typecode MaskType, if necessary), have the
same shape as data, and contain only valuesof 0 or 1.

If the mask is not None but its shape does not match that of data, an exception will be thrown, unless one of the
two isof length 1, in which case the scalar will be resized (using Numeric.resize) to match the other.

See “Copying or not?’ on page94 for a discussion of whether or not the resulting array shares its data or its
mask with the arguments given to these constructors.

92

Important Tip

filled isvery important. It convertsits argument to a plain Numeric array.

filled (x, value = None) returnsx with any invalid locations replaced by afill value. filled is guaranteed to return
aplain Numeric array. The argument x does not have to be amasked array or even an array, just something that
Numeric can turn into one.

» If xisnot amasked array, and not a Numeric array, Numeric.array (X) is returned.

» If x isacontiguous Numeric array then x is returned. (A Numeric array iscontiguous if its data storage re-
gion islayed out in column-major order; Numeric allows non-contiguous arraysto exist but they are not al-
lowed in certain operations).

» If xisamasked array, but the mask is None, and x’s data array is contiguous, then it is returned. If the data
array is not contiguous, a (contiguous) copy of it is returned.

» If xisamasked array with an actual mask, then an array formed by replacing the invalid entries withvalue,
or fill_value (x) if valueis None, is returned. If thefill value used is of adifferent type or precision than X,
the result may be of a different type or precision than x.

Note that anew array is created only if necessary to createacorrectly filled contiguous Numeric array.

Thefunction filled plays acentral role in our design. It isthe“exit” back to Numeric, and isused whenever the
invalid values must be replaced before an operation. For example, adding two masked arraysaand b isroughly:

masked_array(filled(a, 0)+filled(b, 0), nask or(getmask(a), getnask(b))
That is, fill theinvalid entriesaand b with zeros, add them up, and declare any entry of theresult invalid if e-
ther aor b wasinvalid at that spot. The functions getmask and mask_or are discussed later.

filled (x) also can be used to simply be certain that some expression isa contiguous Numerical array at little
cost. If its argument is aNumeric array aready, it is returned without copying.

fill_value (x), and the method x.fill_value() of the same name on masked arrays, returnsaval ue suitablefor fill-
ing x based on itstype. If x is a masked array, then x.fill_vaue () results. Thereturned value for a given type
can be changed by assigning to these namesin module MA: They should be set to scalars or one element arrays.

default _real fill_value = Numeric.array([1.0e20], Float32)

defaul t _conplex_fill_value = Nuneric.array([1.0e20 + 0.0j], Conpl ex32)
default _character fill _value = masked

default _integer _fill_value = Nuneric.array([0]).astype(Unsignedl nt8)
default_object fill_value = masked

The variable masked is amodule variable of MA and is discussed in “Working with Masks’ on page93. Call-
ing filled with afill_value of masked sometimes produces a useful printed representation of a masked array.
The function fill_value works on any kind of object.

Working with Masks

create_mask (ashape) returns an array suitable for use as a mask, having the given shape and initialized to ze-
ros.

is_mask (m) istrue if mis of atype and precision that would be allowed as the mask field of a masked array
(that is, it is an array of integers with Numeric's typecode MaskType, or it is None). To be alegal mask, m
should contain only zeros or ones, but thisis not checked.

make_mask (m, copy=0, flag=0) returns an object whose entries are equal tom and for which is_mask would
returntrue. If misalready amask or None, it returnsmor acopy of it. Otherwiseit will attempt to make a mask,
so it will accept any sequence of integers of for m. If flag istrue, make_mask returns None if its return value
otherwise would contain no true elements. To make alegal mask, m should contain only zeros or ones, but this
isnot checked.

93

sheliy poxse N o

getmask (x) returnsx.mask(), the mask of x, if xisamasked array, and None otherwise. Note that getmask may
return None if X isamasked array but has a mask of None.

getmaskarray (x) returnsx.mask() if x isamasked array and has a mask that is not None; otherwise it returns
azero mask array of the same shape as x. Unlike getmask, getmaskarray always returns an Numeric array of
typecode MaskType.

mask_or (ml, m2) returnsan object which when used asamask behaveslike the element-wise “logical or” of
m1 and m2, where m1 and m2 are either masks or None (e.g., they are the results of calling getmask). A None
is treated as everywhere false. If both m1 and m2 are None, it returns None. If just one of themisNone, it re-
turns the other. If m1 and m2 refer to the same object, areference to that object is returned.

masked is a module constant equal to an instance of a class that prints as the word ‘masked’ and which will
throw an exception of type MAError if any attempt is made to do arithmetic upon it. This constant is returned
when an indexing operation resultsin a scalar result at a masked location.

set_fill_value(a, fill_value) isthe same asa.set_fill_value (fill_value) if aisamasked array; otherwise it does
nothing.

Copying or not?

Depending on the arguments results of constructors may or may not contain a separate copy of the data or mask
arguments. The easiest way to think about thisisasfollows: the given field, beit data or a mask, isrequired to
be a Numerical array, possibly with a given typecode, and a mask’s shape must match that of the data. If the
copy argument is zero, and the candidate array otherwise qualifies, areference will be made instead of acopy.
If for any reason the dataisunsuitable asis, an attempt will be madeto make acopy that issuitable. Should that
fail, an exception will be thrown. Thus, acopy=0 argument is more of ahope than a command.

If the basic array constructor is given amasked array asthe first argument, its mask, typecode, spacesaver flag,
and fill value will be used unless specifically specified by one of the remaining arguments. In particular, if dis
amasked array, array(d, copy=0) isd.

Since the default behavior for masksis to use areference if possible, rather than a copy, which producesasize-
able time and space savings, it is especially important not to modify something you used asa mask argument to
amasked array creation routine, if it was a Numeric array of typecode MaskType.

Behaviors

A masked array defines the conversion operators str (x), repr (), float (x), and int (x) by applying the corre-
sponding operator to the Numeric array filled (x)

Indexing and Slicing

Indexing and slicing differ from Numeric: while generdly the same, they return acopy, not a reference, when
used in an expression that produces a non-scalar result. Consider this example:

from Nuneric inport *
x = array([1.,2.,3.])
y = x[1:]
ylol] = 9.
print x
Thiswill print [1., 9., 3.] since x[1:] returns areferenceto a portion of x. Doing the same operation using MA,

fromMA i nport *

x = array([1.,2.,3.])

y = x[1:]

ylol] = 9.

print x
will print [1., 2., 3.], whiley will be aseparate array whose present value would be [9., 3.]. While sentiment on
the correct semantics here is divided amongst the Numeric community as a whole, it is not divided amongst the
author’s community, on whose behalf this package is written.

%

Indexing that produces a scalar result

If indexing into a masked array with one or more indices produces a scalar result, then a scalar valueisreturned
rather than a one-element masked array. This raises the issue of what to return if that location is masked. The
answer is that the module constant masked, discussed above, is returned.

Assignment to elements and slices

Assignment of anormal value to asingle element or slice of a masked array hasthe effect of clearing the mask
inthoselocations. Inthisway previously invalid elements becomevalid. The value being assigned isfilled first,
so that you are guaranteed that all the elements on the left-hand side are now valid.

Assignment of None to a single element or slice of a masked array has the effect of setting the mask in those
locations, and the locations become invalid.

Since these operations change the mask, the result afterwards will no longer share a mask, since masks have
copy-on-write semantics.

Module MA: Attributes

Constants e, pi, NewAxis from Numeric, and the constants from module Precision that define nice names for
the typecodes.

The special variable masked is discussed in “ The constant masked” on pa ge98.

The module Numeric is an element of MA, so after from MA import *, you can refer to the functions in Nu-
meric such as Numeric.ones.

Module MA: Functions

Each of the operations discussed below returns an instance of class MaskedArray, having performed the
desired operation element-wise. In most cases the array arguments can be masked arrays or Numeric arrays or
something that Numeric can turn into a Numeric array, such asalist of rea numbers.

Where Numeric has afunction of the same name, the behavior of the onein MA isthe same, except that it “re-
spects’ the mask.
Unary functions

The result of a unary operation will be masked wherever the original operand was masked. It may aso be
masked if the argument is not in the domain of the function. Functionsavailable are:

sqrt, log, [0g10, exp, conjugate, sin, cos, tan, arcsin, arccos, ar ctan, sinh, cosh, tanh, absolute, fabs, nega-
tive (also as operator -x), nonzero, around, floor

fabs (x) isthe absolute value of x as a Float32 array. The other functions have their standard meaning.

Binary functions

Binary functions return a result that is masked wherever either of the operands were masked; it may also be
masked where the arguments are not in the domain of the function.

add (also as operator +), subtract (also as operator -), multiply (also as operator *), divide (also as operator /
), power (also as operator **), remainder, fmod, hypot, arctan2, bitwise_and, bitwise or, bitwise xor.

95

sheliy poxse N o

Comparison operators

Important Tip

Due to limitations in Python, it isnot meaningful to compare arrays using the symbolic com-
parison operators such as“<". Unfortunately, you can do it; the result just won’t mean any-
thing.

To compare arrays, use the following binary functions. Each of them returns amasked array of 1'sand O's.
equal, not_equal, less_equal, greater_equal, less, greater
Note that asin Numeric, you can use a scaar for oneargument and an array for the other.

Logical operators

Arrays of logical values can be manipulated with:

logical_not (unary), logical_or, logical_and, logical_xor.

alltrue (x) returns 1 if all elements of x are true. Masked elements are treated as true.
sometrue (x) returns 1 if any element of x istrue. Masked elements are treated as false.

Special array operators

isarray (x), isSMA (x) return trueif x is a masked array.

rank (x) isthe number of dimensionsin x.

shape (x) returns the shape of x, atuple of array extents.

resize (X, new_shape) returns a new array with specified shape.

reshape (x, new_shape) returns acopy of x with the given new shape.

ravel (x) returns x as one-dimensiond.

concatenate (arrays, axis=0) concatenates the arrays along the specified axis.

repeat (array, repeats, axis = 0) repeat elements of a repeats times along axis. repeats is a sequence of length
a.shapefaxig] telling how many times to repeat each element.

identity (n) returns the identity matrix of shape n by n.

indices (dimensions, typecode = None) returns an array representing a grid of indices with row-only and col-
umn-only variation.

len (x) is defined to be the length of the first dimension of x. This definition, peculiar from the array point of
view, isrequired by the way Python implements dlicing. Use size (x) for the total length of x.

size (X, axis = None) is the total size of x, or the length of a particular dimension axis whose index is given.
When axisis given the dimension of theresult is one less than the dimension of x.

count (x, axis = None) counts the number of (non-masked) elementsin the array, or in the array along a certain
axis.When axisis given the dimension of the result is one less than the dimension of x.

arange, arrayrange, ones, and zer os are the same as in Numeric, but return masked arrays.

sum, and product are called the same way as count; the difference isthat the result isthe sum, product, or av-
erage respectively of the unmasked element.

average (X, axis=0, weights=None) computes the average value of the non-masked elements of x along the se-
lected axis. If weightsisgiven, it must match the size and shape of x, and the value returned is:

96

Z (weights; ;)

Z wei ghts;
In computing these sums, elements that correspond to those that are masked inx or weights are ignored.

allclose (x, y, fill_value =1, rtol = 1.e-5, atol = 1.e-8) tests whether or not arraysx and y are equal subject to
the given relative and absolute tolerances. If fill_valueis 1, masked values are considered equal, otherwise they
are considered different. The formula used for elements where both x and y have avalid valueis:

[x-y|<atol +rtol * |y |
This means essentially that both elements are small compared to atol or their difference divided by their value
issmall compared to rtol.

allequal (x,y, fill_value = 1) issimilar to dlclose, except that exact equality is demanded.
take (a, indices, axis=0) returns a selection of items from a. See the documentation in the Numeric manual.

transpose (a, axes=None) performs a reordering of the axes depending on the tuple of indices axes; the de-
fault is to reverse the order of the axes.

put (& indices, values) is the opposite of t ake. The values of the array a at the locations specified ini ndi -
ces are set to the corresponding value of val ues. Thearray a must be a contiguous array. The argument in-
dices can be any integer sequence object with values suitable for indexing into theflat form of a. The argument
v must be any sequence of values that can be converted to the typecode of a.

>>> x = arange(6)

>>> put(x, [2,4], [20,40])

>>> print X

[0 120 340 5]
Note that thetarget array a isnot required to be one-dimensional. Sinceit is contiguous and stored in row-major
order, thearray i ndi ces can betreated asindexing a’'s elements in storage order.

Thewrinkle on this for masked arrays isthat if the locations being set by put are masked, themask is cleared in
those locations.

choose (condition, t) has aresult shaped like condition. t must be atuple of two arraystl and t2. Each element
of the result is the corresponding element of t1 where condition is true, and the corresponding element of t2
where condition is false. The result is masked where condition is masked or where the selected element is
masked.

If one element of t isthe special element masked (See “ The constant masked” on pag €98.), the type of there-
sult will be the type of the other array. Otherwise, the type of the result is computed using the standard coercion
rules.

where (condition, X, y) returns an array that isfilled (x) where condition is true, filled (y) where the condition
isfalse, and masked where any of the three argumentsis masked. It isimplemented using choose.

inner product (a, b) and dot (a, b) work asin Numeric, but missing valuesdon’t contribute. Theresult isaways
amasked array, possibly of length one, because of the possibility that one or more entriesin it may beinvalid
since all the data contributing to that entry was invalid.

outerproduct (a b) produces a masked array such that result[i, j] = &[i] * b[j]. The result will be masked where
a[i] or b[j] is masked.

compr ess (condition, x, dimension=-1) compresses out only those valid values where condition is true.
maximum (X, y = None) and minimum (x, y = None) compute the minimum and maximum valid values of x

if y isNone; with two arguments, they return the element-wise larger or smaller of valid values, and mask the
result where either x or y is masked.

sort (x, axis=-1, value = None) returnsthe array x sorted along the given axis, with masked values treated as if
they have a sort value of value but locations containing value are masked in the result if x had a mask to start
with. Thusif x contains value at a non-masked spot, but has other spots masked, the result may not be what you
want.

97

sheliy poxse N o

argsort (x, axis= -1, fill_value= None) isunusua in that it returns a Numeric array, equa to
Numeric.argsort (filled (x, fill_value), axis); thisis an array of indicesfor sorting along agiven axis.

Controlling the size of the string representations

The functions get_print_limit () and set_print_limit (n=0) query and set the limit for converting arrays using
str() or repr (). If an array isprinted that is larger than this, the values are not printed; rather you are informed
of the type and size of the array. If nis zero, the standard Numeric conversion functions are used.

When imported, MA sets this limit to 300, and the limit is also made to apply to standard Numeric arrays as
well.

Helper classes

This section discusses other classes defined in module MA.

MAError

Class MAError inherits from Exception, used to raise exceptions in the MA module. Other exceptions are pos-
sible, such as errors from the underlying Numeric module.

The constant masked
A constant named masked, in Module MA, serves several purposes.

1. When aindexing operation on an MaskedArray instance returns a scalar result, but the location indexed
was masked, then masked is returned. For example, given a one-dimensional array x such that x.mask(3)
is1, then x[3] is masked.

2. When masked isassigned to elements of an array viaindexing or slicing, those elements become masked.
So after x[3] = masked, x[3] is masked.

3. masked.display() isastring that may be used to indicate those elements of an array that are masked when
the array isconverted to astring, as happens with the print statement.

4. masked.set_display (string) can be used to change the value; the default is‘--.

masked.enable(flag) can be used to enable (flag = 1, default) the use of the display string. If disabled
(flag=0), the conversion to string becomes equivalent to str(self filled()).

masked.enabled() returns the state of the display-enabling flag.
Most operations on masked will result in an exception being raised.

Example of masked behavior

>>> from MA i nport *

>>> x=ar ange(10)

>>> x[3] = masked

>>> print X

[0,1,2,-- ,4,5,6,7,8,9,]
>>> print repr(x)

*** Masked array, mask present ***
Dat a:

[0,1,2,-- ,4,5,6,7,8,9,]
Mask (fill value [O,])
[0,0,0,1,0,0,0,0,0,0,]

>>> print x[3]

>>> print x[3] + 1.0
Traceback (innernost |ast):
File "<stdin>", line 1, in ?

98

File "/pcndi/dubois/prerel ease/linux/lib/pythonl.5/site-packages/ MV
_init__.py", line 62, in nope
rai se MAError, 'Cannot do requested operation with a masked val ue.'
MA. MAError: Cannot do requested operation with a masked val ue.

Class masked_unary_function

Given aunary array function f (x), masked_unary_function (f, fill = 0, domain = None) is a function which
when applied to an argument x returns f applied to the array filled (x, fill), with a mask equal to
mask_or (getmask (x), domain (x)).

The argument domain therefore should be a callable object that returns true where x is not in the domain of f.
The following domains are also supplied as members of module MA:

e domain_check_interval (a, b) (x) =truewherex <aory >b.

e domain_tan (eps) (x) istrue where abs (cos (x)) < eps, that is, a domain suitable for the tangent function.
» domain_greater (v) (X) istrue wherex <=v.

» domain_greater_equa (v) (x) istruewherex <v.

Class masked_binary_function

Given a binary array function f (x, y), masked_binary_function (f, fillx=0, filly=0, domain=None) defines a
function whose value at x isf (filled (x, fillx), filled (y, filly)) with aresulting mask of mask_or (getmask (x),
getmask (y), mask_or’d again with those locations where domain (x, y) istrue. The valuesfillx and filly must
be chosen so that (fillx, filly) isin the domain of f.

In addition, an instance of masked_binary_function has two methods defined upon it:
» reduce (target, axis=0)

e accumulate (target, axis = 0)
These methods perform reduction and accumulation as discussed in the section “Ufuncs have special methods’
on pag e28.

Thefollowing domains are available for use as the domain argument:

e domain_safe divide () (X, y) istrue where absolute(x)* 1.e-35 > absolute (y). Asthe commentsin the code
say, “better ideas welcome”. Thisdomain is used for the divide operator.

ActiveAttributes

MA contains asubpackage, MA .activesattr, which defines the class ActiveAttributes. Class MaskedArray inher-
its from ActiveAttributes.

An active attribute is a name, say active, that appearsto be an attribute of a class instance but which in fact is
implemented by atriplet of functions, one each corresponding to the operations x. active, x.active = value, and
del x.active. To create such an attribute, you inherit from ActiveAttributes and in your classes’ initialization
routine you do:

ActiveAttributes. __init__(self) # safe for multiple inheritance
sel f.add_active_attribute_handler (“active”, self.actg,
sel f.acts, self.actd)
Here actg, acts, and actd are the three handlers, which should be methods of this class with signatures actg(self),
acts(self, value), and actd(self). The last two argumentsto add_active attribute_handler can be None, in which
casethe“active” attribute will behave asif it isread-only.

The “attributes’ shape, flat, real, and imag in class MaskedArray are actually “active” attributes.
ActiveAttributes also contains methods:

def get _active_attribute_handler (self, name):
"Get current attribute handl er associated with a nane."

99

sheliy poxse N o

def get_active_attributes (self):
"Return the list of attributes that have handlers."
def get_attribute_node (self, nanme):
"Get the node of an attribute readonly ('r') or witeable ("w)."
def get_basic_attribute_handler (self):
“Returns the underlying nmethods that
handl e the three events.”
def renpve_active_attribute_handler (self, nane):
“Renmove the ‘active behavior for
name.”

Examples of Using MA

Data with a given value representing missing data

Suppose we have read a one-dimensional list of elements named x. We also know that if any of the values are
1.e20, they represent missing data. We want to compute the average value of the data and the vector of devia-
tions from average.

>>> from MA i nport *

>>> X = arange(5)

>>> x[2] = 1.e20

>>> y = masked_val ues (x, 1.e20)
>>> print average(y)

2.0
>>> print y-average(y)
[-2.00000000e+00, -1.00000000e+00, --, 1.00000000e+00,

2.00000000e+00,]

Filling in the missing data
Suppose how that we wish to print that same data, but with the missing values replaced by the average value.
>>> print filled (y, average(y))

Numerical operations

We can do numerical operations without worrying about missing values, dividing by zero, square roots of neg-
ative numbers, etc.

>>> from MA i nport *

>>> x=array([1., -1., 3., 4., 5., 6.], mask=[0,0,0,0,1,0])

>>> y=array([1., 2., 0., 4., 5., 6.], nmask=[0,0,0,0,0,1])

>>> print sqrt(x/y)

[1.00000000e+00, --, --, 1.00000000e+00, --, --,]
Note that four vaues in the result are invalid: one from a negative square root, one from adivide by zero, and
two more where the two arrays x and y had invalid data. Since the result wasof area type, the print command
printed str (filled (sgrt (x/y))).

Seeing the mask

There are various ways to see the mask. Oneisto print is directly, the other isto convert to the repr represen-
tation, and athird is get the mask itself. Use of getmask (x) is more robust than x.mask(), since it will work (re-
turning None) if xisaNumeric array or list.

>>> x=ar ange(10)

>>> x[3:5] = masked

>>> print X

[0,2,2,-- ,-- ,5,6,7,8,9,]

100

>>> print repr(x)
*** Masked array, mask present
Dat a:

[0 ,12,2,-- ,-- ,5,6,7,8,9,

Mask (fill value [0,])
[0,0,0,1,1,0,0,0,0,0,]

>>> print getmask(x)
[0,0,0,1,1,0,0,0,0,0,]

Filling it your way

If we want to print the data with -1's where the elements are masked, we use filled.

>>> print filled(z, -1)
[1.,-1.,-1., 1.,-1.,-1.,]

Ignoring extreme values

Suppose we have an array d and we wish to compute the average of the valuesin d but ignore any data outside

the range -100. to 100.

v = masked_outside(d, -100., 100.)

print average(v)

Averaging an entire multidimensional array

The problem with averaging over an entire array is that the average function only reduces one dimension at a

time. So to average the entire array, ravel it first.

>>> X

*** Masked array, no mask ***
Dat a:
([O,
[3,
[6,
[9,1
>>> aver age(x)

*** Masked array, no mask ***

Dat a:
[4.5, 5.5, 6.5,]

exNsR
Poom
L

11,11

>>> average(ravel (x))
55

101

sheliy poxse N o

102

Index

Symbols
97
.. 26
0 25
i 25,53
_PyArray_multiply_list 66

altrue() 44
argmax() 39
argsort() 39

array 73

Array Attributes 47
Array Functions 34
Array Methods 45

array() 12

array_repr() 42

array_str() 42

array2string 55

arrayobject.h 58

arrayrange() 17

arrays with missing values 89
astype 22

Automatic Coercions 20
axes 12

Broadcasting 54
Bugs 6
byteswapped() 45

Casting 20
Character 13
choose 36

clip() 40

Code Organization 49
Coercion 20
Complex 13
complex numbers 13
Complex0 13
Complex128 13
Complex16 13
Complex32 13

104

Complex64 13
Complex8 13
compress() 37
concatenate() 41
Contiguous arrays 60
Convenience 10
convolve 43
correlation 43
cross _correlate 43
cumproduct() 44
cumsum() 44
CVS 6

determinant() 81
diagonal() 37,42
dimensions 12
Discussion list 6
Distutils 58
Dubois, Paul F. 89

eigenvalues() 80
eigenvectors() 81
element-wise 12
Ellipses 54

FFT 77

fft() 77

flat (attribute) 47
Float 13

Float0 13

Float128 13

Float16 13

Float32 13

Float64 13

Float8 13

floating point exceptions 57
Fortran and Python 6
fpectl 57
fromfunction() 19
fromstring() 39,43
FTP Site 6

gather

see put() 35
generalized inverse() 81
get_seed() 82
Getting array values 24
greece 7

header files 58
homogeneous 12

identity() 20,43
IDLE 8

imaginary (attribute) 47
imaginary numbers 13
import_array() 58
Indexing 53
indices() 40
innerproduct() 42
Installing NumPy 5
Int 13

Int0 13

Int128 13

Int16 13

Int32 13

Int64 13

Int8 13

inverse() 80

inverse fft() 77
inverse real_fft() 78
iscontiguous() 45
itemsize() 45

limiting printing of large arrays 98

linear_least_squares() 81
Logical Ufuncs 30

MA

absolute 95
add 95
alclose 97
alequa 97
altrue 96
arange 96
arccos 95

arcsin 95

arctan 95

arctan2 95

argsort 98

arithmetic operators 95
around 95

array (constructor) 92
arrayrange 96

average 96

bitwise and 95

bitwise or 95

bitwise xor 95

choose 97

classMA 95

comparisons 96

compress 97

concatenate 96

conjugate 95

cos 95

cosh 95

count 96
default_character_fill_value 93
default_complex_fill_value 93
default_integer_fill_value 93
default_object_fill_value 93
default_real_fill_value 93
divide 95

equa 96

exp 95

fabs 95

fill_vaue 93

floor 95

fmod 95

functions and operators 94
get_print_limit 98
getmask 94

getmaskarray 94

greater 96

greater_equal 96

hypot 95

identity 96

indices 96

innerproduct 97

installing 89

invalid, defined 89

is mask 93

isarray 96

iSMA 96

len 96

less 96

less equal 96

log 95

log10 95

logical operators 96

logical_and 96

logical_not 96

logical_or 96

logical_xor 96

MAError 98

make _mask 93

mask method 94

mask_object (constructor) 92

mask_or 94

mask_values 89

masked (constant) 98

masked (constant), role in
printing 98

masked (module constant) 93

masked (special constant) 95

masked, defined 89

masked, special rolein choose 97

masked_array 92

masked_array (constructor) 92

masked_equal 92

masked_greater 92

masked_greater_equal 92

masked less 92

masked_less equal 92

masked_not_equal 92

masked_unary_function 99

masked values 92

masked where 92

masks 93

maximum 97

maximum with two arguments 97

minimum 97

multiply 95

negative 95

nonzero 95

not_equa 96

ones 96

outerproduct 97

power 95

product 96

105

106

put 97

rank 96

ravel 96

remainder 95

reshape 96

resize 96

set_fill_value 94

set_print_limit 98

shape 96

sn 95

sinh 95

size 96

sometrue 96

sort 97

sart 95

subtract 95

sum 96

take 97

tan 95

tanh 95

transpose 97

where 97

zeros 96
MA (masked arrays) 9
mailing list 6
masked arrays 89
Matrix 73
matrixmultiply() 40
missing values 9, 89
multiarray 9,12,52, 73

NaNs 57
NewAXxis 33,54
nonzero() 37
Numeric.py 9
NumTut 7

observations, dealing with missing 89

ones() 17
outerproduct 42

Patches 6
permutation() 82
Pickling 57

printing

using MA to limit printing of large

arrays 98
product() 44
Pseudo Indices 32
put() 35
PyArray_Asl1D 67
PyArray_As2D 67
PyArray_CanCastSafely 66
PyArray Cast 66
PyArray_Check 65
PyArray_ContiguousFromObject 67
PyArray_Copy 67
PyArray_CopyFromObject 67
PyArray DescrFromType 66
PyArray_Free 67
PyArray_FromDims 66
PyArray_FromDimsAndData 66
PyArray_FromObject 67
PyArray_INCREF 65
PyArray_ObjectType 66
PyArray_Reshape 67
PyArray_Return 67
PyArray_SetNumericOps 65
PyArray_SetStringFunction 66
PyArray_Size 66
PyArray_Take 67
PyArray XDECREF 66
PyArrayError 66
PyArrayObject 58, 64
Pyfort 6
PyObject 14
PyUFunc_Check 70
PyUFunc_FromFuncAndData 70
PyUFunc_GenericFunction 71

randint() 82
random() 82
RandomArray 82
rank 12,73

ravel 37

real (attribute) 47
real_fft() 77
repeat() 36,42
reshape 15
resize 16

resize() 42

seed() 82

Setting array values 24

shape 73
singular_value_decomposition() 81
Slicing Arrays 25
solve_linear_equations() 80
sometrue() 44

sort() 38

SourceForge 6

sum() 44

swapaxes() 41

take() 34

Textual representations 55
thread 8

Tk 8

tolist() 46

tostring() 45

trace() 38

transpose() 36
typecode 12, 21,73

typecode() 45
Typecodes 52

ufunc 9, 73

Ufunc shorthands 31
UfuncObject 68
ufuncobject.h 58
Ufuncs 27

Unary Mathematical Ufuncs 30
uniform() 82
universal function 73
universal functions 9
Unix 6

Unpickling 57
Unsignedint8 13
UserArray 73

view 7

w

where() 37,43

Zero-dimensional arrays 60
zeros() 17

107

	Numerical Python
	Part I: Numerical Python
	1. Introduction
	Where to get information and code
	Acknowledgments

	2. Installing NumPy
	Testing the Python installation
	Testing the Numeric Python Extension Installation
	Installing NumPy
	Installing on Windows
	Installing on Unix

	At the SourceForge...
	The Numeric Discussion List
	Bugs and Patches
	CVS Repository
	FTP Site
	Pyfort

	3. The NumTut package
	Testing the NumTut package
	Possible reasons for failure:
	Win32
	Unix

	4. High-Level Overview
	Array Objects
	Universal Functions
	Convenience Functions

	5. Array Basics
	Basics
	Creating arrays from scratch
	array() and typecodes
	Multidimensional Arrays

	Creating arrays with values specified `on-the-fly'
	zeros() and ones()
	arrayrange()
	Creating an array from a function: fromfunction()
	identity()

	Coercion and Casting
	Automatic Coercions and Binary Operations
	Deliberate up-casting: The asarray function
	The typecode value table
	Consequences of silent upcasting
	Saving space
	Deliberate casts (potentially down): the astype method

	Operating on Arrays
	Simple operations

	Getting and Setting array values
	Slicing Arrays

	6. Ufuncs
	What are Ufuncs?
	Ufuncs can operate on any Python sequence
	Ufuncs can take output arguments
	Ufuncs have special methods
	Ufuncs always return new arrays

	Which are the Ufuncs?
	Unary Mathematical Ufuncs (take only one argument)
	Binary Mathematical Ufuncs
	Logical Ufuncs
	Ufunc shorthands

	7. Pseudo Indices
	8. Array Functions
	take(a, indices, axis=0)
	put (a, indices, values)
	putmask (a, mask, values)
	transpose(a, axes=None)
	repeat(a, repeats, axis=0)
	choose(a, (b0, ..., bn))
	ravel(a)
	nonzero(a)
	where(condition, x, y)
	compress(condition, a, axis=0)
	diagonal(a, k=0)
	trace(a, k=0)
	searchsorted(a, values)
	sort(a, axis=-1)
	argsort(a, axis=-1)
	argmax(a, axis=-1), argmin(a, axis=-1)
	fromstring(string, typecode)
	dot(m1, m2)
	matrixmultiply(m1, m2)
	clip(m, m_min, m_max)
	indices(shape, typecode=None)
	swapaxes(a, axis1, axis2)
	concatenate((a0, a1, ... , an), axis=0)
	innerproduct(a, b)
	outerproduct(a,b)
	array_repr()
	array_str()
	resize(a, new_shape)
	diagonal(a, offset=0, axis1=-2, axis2=-1)
	repeat (a, counts, axis=0)
	convolve (a, v, mode=0)
	cross_correlate (a, v, mode=0)
	where (condition, x, y)
	identity(n)
	sum(a, index=0)
	cumsum(a, index=0)
	product(a, index=0)
	cumproduct(a, index=0)
	alltrue(a, index=0)
	sometrue(a, index=0)

	9. Array Methods
	itemsize()
	iscontiguous()
	typecode()
	byteswapped()
	tostring()
	tolist()

	10. Array Attributes
	flat
	real and imaginary

	11. Special Topics
	Subclassing
	Code Organization
	Numeric.py and friends
	UserArray.py
	Matrix.py
	Precision.py
	ArrayPrinter.py
	Mlab.py

	The multiarray object
	Typecodes
	Indexing in and out, slicing
	Ellipses
	NewAxis
	Set-indexing and Broadcasting
	Axis specifications
	Textual representations of arrays
	Comparisons
	Pickling and Unpickling -- storing arrays on disk
	Dealing with floating point exceptions

	12. Writing a C extension to NumPy
	Introduction
	Preparing an extension module for NumPy arrays
	Accessing NumPy arrays from C
	Types and Internal Structure
	Element data types
	Contiguous arrays
	Zero-dimensional arrays

	A simple example
	Accepting input data from any sequence type
	Creating NumPy arrays
	Returning arrays from C functions
	A less simple example

	13. C API Reference
	ArrayObject C Structure and API
	Structures
	The ArrayObject API
	Notes

	UfuncObject C Structure and API
	C Structure
	UfuncObject C API

	14. Glossary

	Part II: Optional Packages
	License and disclaimer for packages MA and RNG
	15. FFT Reference
	Python Interface
	fft(data, n=None, axis=-1)
	inverse_fft(data, n=None, axis=-1)
	real_fft(data, n=None, axis=-1)
	inverse_real_fft(data, n=None, axis=-1)
	fft2d(data, s=None, axes=(-2,-1))
	real_fft2d(data, s=None, axes=(-2,-1))

	C API
	Compilation Notes

	16. LinearAlgebra Reference
	Python Interface
	solve_linear_equations(a, b)
	inverse(a)
	eigenvalues(a)
	eigenvectors(a)
	singular_value_decomposition(a, full_matrices=0)
	generalized_inverse(a, rcond=1e-10)
	determinant(a)
	linear_least_squares(a, b, rcond=e-10)

	Compilation Notes

	17. RandomArray Reference
	Python Interface
	seed(x=0, y=0)
	get_seed()
	random(shape=ReturnFloat)
	uniform(minimum, maximum, shape=ReturnFloat)
	randint(minimum, maximum, shape=ReturnFloat)
	permutation(n)

	Floating point random arrays
	standard_normal (shape=ReturnFloat)
	normal (mean, stddev, shape=ReturnFloat)
	multivariate_normal (mean, covariance) or multivariate_normal (mean, covariance, leadingAxesShape)
	exponential (mean, shape=ReturnFloat)
	beta (a, b, shape=ReturnFloat)
	gamma (a, r, shape=ReturnFloat)
	chi_square (df, shape=ReturnFloat)
	noncentral_chi_square (df, nonc, shape=ReturnFloat)
	F (dfn, dfd, shape=ReturnFloat)
	noncentral_F (dfn, dfd, nconc, shape=ReturnFloat)

	Integer random arrays
	binomial (trials, prob, shape=ReturnInt)
	negative_binomial (trials, prob, shape=ReturnInt)
	poisson (mean, shape=ReturnInt)
	multinomial (trials, probs) or multinomial (trials, probs, leadingAxesShape)

	Examples

	18. Independent Random Streams
	Background
	Usage
	Module RNG
	Module ranf

	Examples

	19. Masked Arrays
	What is a masked array?
	Installing and using MA
	Class MaskedArray
	Attributes of masked arrays
	Methods on masked arrays.
	Constructing masked arrays
	Working with Masks
	Copying or not?
	Behaviors
	Indexing and Slicing
	Indexing that produces a scalar result
	Assignment to elements and slices

	Module MA: Attributes
	Module MA: Functions
	Unary functions
	Binary functions
	Special array operators
	Controlling the size of the string representations

	Helper classes
	MAError
	The constant masked
	Class masked_unary_function
	Class masked_binary_function
	ActiveAttributes

	Examples of Using MA
	Data with a given value representing missing data
	Filling in the missing data
	Numerical operations
	Seeing the mask
	Filling it your way
	Ignoring extreme values
	Averaging an entire multidimensional array

	Index

