Changes in forest composition impact ecological services, and are considered important factors driving global climate change. A hybrid sampling method along with a modelling approach to map current and past land cover in Kunming, China is reported. MODIS land cover (2001–2011) data-sets were used to detect pixels with no apparent change. Around 3000 ‘no change points’ were systematically selected and sampled using Google Earth’s high-resolution imagery. Thirty-five per cent of these points were verified and used for training and validation. We used Random forests to classify multi-temporal Landsat imagery. Results show that forest cover has had a net decrease of 14385 ha (1.3% of forest area), which was primary converted to shrublands (11%), urban and barren land (2.7%) and agriculture (2.5%). Our validation indicates an overall accuracy (Kappa) of 82%. Our methodology can be used to consistently map the dynamics of land cover change in similar areas with minimum costs.

Full citation

Lu N., Hernandez A.J., Ramsey R.D. (2014). Land Cover Dynamics monitoring with Landsat data in Kunming, China: A cost-effective sampling and modeling scheme using Google Earth imagery and Random Forests. Geocarto International, 30:186-201. 10.1080/10106049.2014.894583.